Nilpotent Groups Have Polynomial Growth

January 15, 2020

Theorem 1. Let G be a finitely generated nilpotent group. Then G has polynomial growth.

Proof. We proceed by induction on the length of the lower central series. If G is abelian on m generators $\left\{g_{1}, \ldots, g_{m}\right\}$ then the elements in the ball of radius x around the identity are the elements made of $n_{i} g_{i} \mathrm{~s}$ for each i with $n_{1}+\ldots+n_{m} \leq x$. Padding out with the identity element, which we say there are n_{0} of, this is the number of ways of picking nonnegative integers $n_{0}, n_{1}, \ldots, n_{m}$ with $n_{0}+\cdots+n_{m}=x$. This is the same as the number of ways of picking positive integers with $n_{i}+1$ with $\left(n_{0}+1\right)+\cdots+\left(n_{m}+1\right)=x+m$. This is the number of ways of breaking up the distance $x+m$ with m fenceposts into positive integer distance lengths, which is $\binom{x+m}{m}$. We have not yet considered relations, so what we have is an upper bound:

$$
\beta_{G}(x) \leq\binom{ x+m}{m}=\frac{(x+m)!}{m!x!} \asymp x^{m} .
$$

Let's do an example of how the induction step works.
Suppose G, generated by $\left\{g_{1}, \ldots, g_{m}\right\}$ is a 2 -step nilpotent group, that is, $[G, G]$ lies in the centre of the group. Take a product g of at most x generators, and add occurences of the identity to the start of the element until it is a word of length x in $\left\{1, g_{0}, \ldots, g_{m}\right\}$. Exchanging two elements of this set may produce a commutator on the right:

$$
g h=h g\left[g^{-1}, h^{-1}\right]
$$

and this commutator lies in the center. So we can take our group element, and "move left" all occurences of g_{1} over until all of the occurences of g_{1} occur immediately after all occurences of the identity, and then do the same with g_{2} and keep going. There are at most x generators to move to a new place, and they have to be commuted with at most x other generators, and the produced commutators. They commute with the produced commutators, so there are at most x^{2} commutators produced by this process. So, we may write our group element in the form

$$
g=1^{n_{0}} g_{1}^{n_{1}} \cdots g_{m}^{n_{m}} C
$$

where $n_{0}+\cdots+n_{m}=x$ and C is a product of at most m^{2} commutators.

In this case $[G, G]$ is generated by $\left[g_{i}^{ \pm 1}, g_{j}^{ \pm 1}\right]$ for $1 \leq i<j \leq m$ and the commutators are words of length 1 in the generators of $[G, G]$. By induction, the derived subgroup has polynomial growth. Let the degree of this growth be D.

We then have a bound of $\binom{x+m}{m} \asymp x^{m}$ elements of the form $1^{n_{0}} g_{1}^{n_{1}} \cdots g_{m}^{n_{m}}$ as above, and C is a word of length at most m^{2} in an abelian group of polynomial growth degree D. Therefore, there are $\asymp\left(x^{2}\right)^{D}=x^{2 D}$ words of this form in $[G, G]$, and the total number of possible elements is $\asymp x^{m+2 D}$.

Now let's do the full induction step. Suppose G is a group with derived series having length n, so that $[G,[G, G]]$ has polynomial growth by induction and derived series length $n-1$.

Take a product g of at most x generators, and multiply on the left by the identity until we have a word of length x in the alphabet $\left\{1, g_{1}, \ldots, g_{m}\right\}$.

Again, rewrite this so that g has all occurrences of 1, then all occurrences of g_{1}, etc. This involves:

- producing at most x^{2} commutators $\left[g_{i}, g_{j}\right]$ moving generators of low index to the left;
- moving all x generators past each of these x^{2} commutators at most once, leaving x^{3} elements of the form $\left[x_{i},\left[x_{j}, x_{k}\right]\right]$;
- ...
- moving x generators past $\leq x^{n-2}$ elements of the form $\left[g_{i_{1}}\left[\cdots\left[g_{i_{n-3}}, g_{i_{n-2}}\right]\right] \cdots\right]$, producing at most x^{n-1} elements of the form $\left[g_{j_{1}}\left[\cdots\left[g_{j_{n-2}}, g_{j_{n-1}}\right]\right] \cdots\right]$ on the right.
- nothing else, because elements of the form $\left[g_{i_{1}}\left[\cdots\left[g_{i_{n-2}}, g_{i_{n-1}}\right]\right] \cdots\right]$ lie in the centre.

So we can rewrite g in the form

$$
1^{i_{0}} g_{1}^{i_{1}} \cdots g_{m}^{i_{m}} C
$$

. C is a product of at most $x^{n}+x^{n-1}+\cdots+x^{2} \leq a x^{n}$ elements of $[G, G]$, all of which are of the form $\left[g_{j_{1}}\left[\cdots\left[g_{j_{k-1}}, g_{j_{k}}\right] \cdots\right]\right]$. These are in a subgroup generated by the commutators of depth at most $n-1$, and in these generators C is a word of length at most $a x^{n}$.

Since $[G, G]$ has polynomial growth of degree D, there are at most $\left(a x^{n}\right)^{D} \asymp$ $x^{n} D$ such elements possible. As previously, there are at most $\binom{x+m}{m} \asymp x^{m}$ elements of the form $1^{i_{0}} g_{1}^{i_{1}} \cdots g_{m}^{i_{m}}$ so overall we have $\prec x^{m+n D}$ elements of the form $1^{i_{0}} g_{1}^{i_{1}} \cdots g_{m}^{i_{m}} C$ with $i_{0}+\cdots+i_{m}=x$. So, $\beta_{G}(x) \prec x^{m+n D}$.

