
Modular Representation Theory

Notes by Eve Pound∗

Based on lectures by Stuart Martin†

0 Informal Chat

The role of modular representation theory is roughly that summarised by the
following picture.

Modular representation theory

an algebra A Black box information about A-modules

Definition. An algebra A is a vector space over a field k with a multiplication.

Example 0.1. The group algebra A = kG = span〈g | g ∈ G〉, so the elements
of G form a basis and the multiplication is inherited from the group.

An A-module / representation of A is a finite dimensional vector space V over
k with an A-action. Representation theory tries to break up A-modules into
pieces. An A-module module M is indecomposable if M 6∼= M1 ⊕ M2 as A-
modules where M1,M2 are nonzero. An A-module M is irreducible/simple if it
has no A-submodules except 0,M .

An algebra A is semisimple if the concept of being indecomposable is the
same as the concept of being irreducible for A-modules. This is ordinary repre-
sentation theory. The non-semisimple case is modular representation theory.

A composition series for an A-module M is a sequence

M = M0 ⊃M1 ⊃M2 ⊃ . . . ⊃Ml = 0

where the Mi are submodules of Mi−1 with Mi/Mi+1 simple for all i.

Theorem 0.2 (Jordan-Hölder). Two different composition series for M will
always produce the same multiset Mi/Mi+1 of simple modules.

Modular representation theory boils down to finding this multiset of compo-
sition factors of M .

∗corrections to ep455@cam.ac.uk. All errors are mine.
†Lectures for Part III Representation Theory in Lent 2019 at the University of Cambridge.
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Remark. If k = C, then CG is semisimple: this is Maschke’s Theorem 1.10.

Questions. Recall the following questions from ordinary representation theory.
We might want to ask them similar questions in the modular case.

• What are the irreducible modules?

– If k = C, there is a correspondence with irreducible characters.

• How many are there?

– If k = C, the number of conjugacy classes of G

• How do we decompose a representation into a direct sum of irreducibles?

– Again, in the complex case, we have a handle.

If k = Fp then kG cannot be semisimple if p | G. (If p - G, Maschke’s
Theorem holds.) Finite dimensional semisimple algebras are described by the
Artin-Wedderburn theorem 3.9. In the modular case, the corresponding ques-
tions it makes sense to ask are:

• What are the indecomposable modules?

• What are their composition series?

• Compute the irreducible characters: how many are there? It turns out
this is the number of p-regular conjugacy classes (those with order coprime
to p).

Actually the submodules of a given M form a lattice (under inclusion of
submodules) which we would like to understand. The lattice is modular: we can
imagine each edge of the associated Hasse diagram is labelled by a simple module
N1/N2 where the Ni are modules on the ends of the edge. So composition series
are just maximal chains in the lattice of submodules.

Jordan Hölder implies that every maximal chain in the lattice of submodules
for M has the same multiset of labels on its edges: this determines the set of
labels.

1 Modules, representations and reducibility

Definition 1.1. If G is a finite group and k a commutative ring of coefficients
then a representation of G over k is a group homomorphism

ϕ : G→ GLn(k)

for some n ∈ N. The degree of the representation is n.

Examples 1.2 (of modules). (a) (G,+) is an abelian Z-module and the sub-
modules are the subgroups.
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(b) A ring R is a right R-module with respect to multiplication, and the
submodules are the right ideals.

(c) If R is a ring, Rop is the opposite ring with x ◦ y = yx. Left R-modules
are the same things as right Rop modules as we can define x · a = ax and
(x · a)b = x(ba) = x(a ◦ b) for x ∈M,a, b ∈ R.

1.3. Let R,S be rings with 1. Suppose an abelian group M is both a left R-
module and a right S-module. M is an (R,S)-bimodule if in addition (rm)s =
r(ms) for all r ∈ R, s ∈ S,m ∈M .

For example, if S ⊆ R, R is an (R,S)-bimodule.

1.4. An R-module M is finitely generated if all elements of M can be written
as an R-combination of elements of some fixed finite subset of M .

1.5. The group algebra kG consists of linear combinations of elements of G with
coefficients in k, {

∑
g αgg | αg ∈ k} with natural addition and multiplication

making kG into a ring and k-algebra.

1.6. Every left kG-module induces some (unique) representation ϕ of G, and
conversely.

Proof. Given ϕ : G→ GLn(k), let V = kn a kG-module via, for all v ∈ V ,∑
g∈G

αgg

 · v =
∑
g∈G

αgϕ(g)(v).

Conversely, provided a kG-module M when regarded as a k-module via k ↪→ kG
is finitely generated and free, we get a representation ϕ by choosing a basis for
M and setting ϕ(g) · v = g · v for all v ∈ kn.

Example. If k is a field, the representations of G over k are exactly the finite
dimensional left kG-modules.

1.7. Two representations ϕ,ψ of degree, m,n are similar if m = n and there is
a nonsingular x ∈ GLn(k) such that xϕ(g)x−1 = ψ(g) for all g ∈ G. The words
conjugate and equivalent are also used. This corresponds to an isomorphism
of kG-modules. More generally, a intertwining operator is an n ×m matrix X
such that ϕ(g)X = Xψ(g) for all g ∈ G. This corrresponds to a homomorphism
between the corresponding modules.

Reducibility and Decomposability

1.8. A representation ϕ : G→ GLn(k) is reducible if it is similar to a represen-
tation of the form

ψ(g) =

[
Ai,i Bn−i,i

0i,n−i Cn−i,i

]
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for all g ∈ G. The subspace spanned by the first i basis vectors is an invari-
ant subspace (W ≤ V is invariant if gw ∈ W for all w ∈ W, g ∈ G). The
representation is irreducible or simple if it is nonzero and not reducible.

The representation ϕ is decomposable if it is similar to a representation ψ

such that ψ(g) =

[
∗ 0
0 ∗

]
for all g ∈ G. A kG-module V is decomposable if it

splits as V = W1 ⊕W2 with W1,W2 nonzero submodules. If V is nonzero and
not decomposable, it is indecomposable.

Definition 1.9. A short exact sequence of kG-modules is a sequence of kG-
modules and kG-homomorphisms of the form

0 V1 V2 V3 0

such that for each pair of composable arrows, the image of the left arrow is the
kernel of the right arrow. That is, V1 is isomorphic to a submodule of V2, and
V3
∼= V2/V1. We say that V2 is an extension of V1 by V3. We abbreviate and

just write s.e.s. for short exact sequence.

A s.e.s. 0 V1 V2 V3 0α β
is split if there is a map (a

splitting) γ : V3 → V2 such that β ◦ γ = IdV3
. Thus, V2 = αV1 ⊕ γV3

∼= V1 ⊕ V3.

Example. All short exact sequences of C-vector spaces are split.

Theorem 1.10 (Maschke’s Theorem). If |G| ∈ k× and

0 V1 V2 V3 0α β

is a s.e.s. of kG-modules which splits as a sequence of k-modules then it splits
as a s.e.s. of kG modules.

Proof. Let ϕ : V3 → V2 be a k-splitting and define

γ =
1

|G|
∑
g∈G

g−1ϕg.

Then

β ◦ γ(x) = β

 1

|G|
∑
g∈G

g−1ϕg(x)

 =
1

|G|
∑
g∈G

g−1β(ϕ(g(x)))

since β is a kG-homomorphism. Since ϕ is a splitting of k-modules, the above
becomes 1

|G|
∑
g∈G g

−1g(x) = x. That γ respects addition and multiplication is

immediate, so it remains to check it is a kG-homomorphism. We have

γ

(∑
h∈G

αhh · x

)
=

1

|G|
∑
g∈G

g−1ϕg

(∑
h∈G

αhh · x

)
.
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Since ϕ is a k-homomorphism this is

1

|G|
∑
g∈G

g−1ϕ

(∑
h∈G

αhgh · x

)
=

1

|G|
∑
g∈G

g−1
∑
h∈G

αhϕ(gh · x).

Swapping the sums and multiplying by hh−1 this is equal to∑
h∈G

αhh
1

|G|
∑
g∈G

h−1g−1ϕ(ghx) =
∑
h∈G

αhh · γ(x),

so γ is a kG-homomorphism.

Example 1.11. Suppose p | |G| and p | char(k). Then kG is not semisim-
ple: if it were, the trivial module k would appear once as a summand in a
decomposition of kG into simple kG-modules. In particular any composition
series of kG has exactly one factor isomorphic to k, c.f. 3.9. The augmen-
tation map kG → k sending, for αi ∈ k, gi ∈ g,

∑
αigi 7→

∑
αi has kernel∑

G = {
∑
αigi ∈ kG |

∑
αi = 0} the augmentation ideal. Note that

∑
G is

a submodule of the group algebra, and kG/
∑
G
∼= k the trivial module. For

g ∈ kG, 1 6∈
∑
G, g1 = 1 + (g − 1) ∈ 1 +

∑
G. On the other hand let σ ∈ kG be

σ =
∑
g∈G g. Since p | |G|, σ ∈

∑
G so the line kσ is a submodule of kG also

isomorphic to the trivial module. So, when the series kG ⊃
∑
G ⊃ kσ ⊃ 0 is

refined to a composition series there are at least two factors isomorphic to k, a
contradiction.

2 Hom, tensors, exact sequences

Definition. If R is a ring and M a right R-module, N a left R-module, the
tensor product M⊗RN is an abelian group generated by {m⊗n | m ∈M,n ∈ N}
where ⊗ satisfies, for all m,m′ ∈M,n, n′ ∈ N, r ∈ R :

• (m+m′)⊗ n = (m⊗ n) + (m′ ⊗ n).

• mr ⊗ n = m⊗ rn.

• m⊗ (n+ n′) = m⊗ n+m⊗ n′.

Examples. • R commutative implies that left and right modules agree so
given two (left) R modules M,N , can form M ⊗R N an R-module via
r(m⊗ n) = rm⊗ n.

• If M is an (R,S)-bimodule and N is a left S-module, then M ⊗S N is a
left R module via r(m⊗ n) = (rm)⊗ n.

• If M is an (R,S)-bimodule and N is a left S-module then HomS(M,N)
is a left R-module via (rf)(m) = f(mr).

• With the hypotheses of the previous point, HomS(N,M) is a right S-
module via (fs)(n) = f(sn).
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2.1. Let H ≤ G and suppose M is a kH-module. Then, kG ⊗kH M is a left
kG-module, called the induced module, M ↑G .

Proposition 2.2. If R ≤ S and A is a left S-module, N a left R-module and
M an (S,R)-bimodule then

HomR(N,HomS(M,A)) ∼= HomS(M ⊗R N,A).

Proof. (Sketch.) ϕ(α)(m ⊗ n) = α(n)(m) and ψ(β)(n)(m) = β(m ⊗ n) are
mutually inverse.

Corollary 2.3. HomkH(U,HomkG(kG, V )) ∼= HomkG(kG⊗kH U, V ).

Theorem 2.4 (Frobenius Reprocity / Nakayama Isomorphism).

HomkH(U, V ↓H) ∼= HomkG(U ↑G, V ).

Proof. kG is a (kG, kH)-bimodule so by 2.1, U ↑G= kG⊗kH U so by 2.3,

HomkH(U,HomkG(kG, V )) ∼= HomkG(U ↑G, V ).

Hence it suffices to prove that

V ↓H∼= HomkG(kG, V ).

To see this, define a map τ from right to left by τ(α) = α(1), giving HomkG(kG, V )
the kH structure (bα)(a) = α(ab). Injectivity is immediate since the image at
1 determines the image on kG of a kG-homomorphism.

Now if U, V are kG-modules, they inherit a k-vector space structure and

• U ⊗k V is a kG-module via g(u⊗ v) = gu⊗ gv.

• Homk(U, V ) is a kG-module: if f ∈ Homk(U, V ), g ∈ G, then define
(gf)(u) := gf(g−1u).

So if U, V,W are kG-modules then by 2.2 there is an isomorphism of kG-modules

Homk(U,Homk(V,W )) ∼= Homk(U ⊗k V,W ).

Taking G-fixed points on both sides we get

HomkG(U,Homk(V,W ))→ HomkG(U ⊗k V,W ).

Proposition 2.5. If M is a right R-module and

0 N N ′ N ′′ 0

is a s.e.s. of left R-modules,

0 M ⊗R N M ⊗R N ′ M ⊗R N ′′ 0
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is exact on the left.

Proposition 2.6. If M,N,N ′, N ′′ are left R-modules and

0 N N ′ N ′′ 0

is a s.e.s. of left R-modules, then so are

0 HomR(M,N) HomR(M,N ′) HomR(M,N ′′) 0

and

0 HomR(N,M) HomR(N ′,M) HomR(N ′′,M) 0.

Lemma 2.7. If 0 M1 M2 M3 0
α1 β

is a s.e.s. of finite

dimensional kG-modules and k is a field, then the sequence splits.

3 Wedderburn’s structure theorem

Let R be a ring with 1.

Definition 3.1. The Jacobson radical of R

J(R) =
⋂
{maximal left ideals of R}.

Example. J(Z) = 0 =
⋂
p prime pZ.

If M is any R-module, the annihilator

annR(M) = {a ∈ R : am = 0 for all m ∈M}.

Recall that simple left R-modules are quotients of R by maximal left ideals.
Conversely, if S is a simple left R-module, 0 6= x ∈ S, then the map R → S
given by right multiplication by x is surjective. Let M be the kernel, then we
have S ∼= R/M .

Theorem 3.2.

J(R) =
⋂

Msimple left
R-module

annR(M) =
⋂

Mmax
left ideal

annR(R/M).

So, we may conclude that, as each annR(M) is a 2-sided ideal, J(R) is a
2-sided ideal.

Theorem 3.3. J(R) = {y ∈ R : a, b ∈ R =⇒ 1− ayb has a 2-sided inverse}.

Corollary 3.4. J(R) is the intersection of maximal right ideals of R.

Theorem 3.5 (Nakayama’s Lemma). If M is a finitely generated R-module
such that J(R)M = M then M = 0.
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The idea of the proof is to take a minimal generating set for M and then
use 3.3 to kill a generator off.

Example. If S is a simple R-module, then J(R)S = 0.

Definition 3.6. An R module M is semisimple / completely reducible if every
R submodule of M is a summand. Equivalently, M is a direct sum of simple
modules.

Proposition 3.7. 1. Every submodule of a semisimple module is semisim-
ple, and a direct summand.

2. Every quotient of a semisimple module is semisimple.

3.8. If R is left Artinian then the following are equivalent:

(i) J(R) = 0;

(ii) Every finitely generated R-module is semisimple;

(iii) Every R-module is semisimple.

Proof. If J(R) = 0, let M ⊂R R be minimal such that it is the intersection of a
finite set of maximal ideals Mi. Then M = (0) since J(R) = 0. So, 0 =

⋂n
i=1Mi

for some maximal ideals Mi. There is an injection R ↪→
⊕n

i=1R/Mi =
⊕
Si for

Si simple so RR is semisimple. Note that we require R to be Artinian to have
a finite direct sum.

Now suppose RR is semisimple. Then J(R) is a submodule and therefore a
direct summand,

RR = J(R)⊕R R/J(R).

So
J(RR) = J(J(R)⊕R R/J(R)).

Therefore, J(R) = J(R)2 so J(R) = 0 by Nakayama’s Lemma.

In particular, in the semisimple case there is no loss in assuming finite gen-
eration.

Theorem 3.9 (Artin-Wedderburn). Let R be a finite dimensional k-algebra
such that J(R) = 0. Then

R =

m∏
i=1

Mαi(∆i)

where the ∆i are division rings with centre containing k, finite dimensional over
k.

Remarks. (a) If k is algebraically closed, the only finitely dimensional di-
vision rings over k are k itself. For example, since CG is semisimple
and C is algebraically closed, CG =

∏
iMni(C). For example, CS3 =

C× C×M2(C).
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(b) If k = R, then ∆i ∈ {R,C,H} the set of all finite dimensional associative
division rings (Frobenius’ theorem).

(c) If k is finite then each ∆i is a finite field (Wedderburn’s little theorem).

(d) If R = Un(k) upper triangular matrices (c.f. [Alp86]) then

J(R) =

0 ∗ ∗
. . . ∗

0

 , R = J(R)⊕D

with D the diagonal matrices. Now J(D) = 0 so 3.9 applies and D =
k ⊕ k ⊕ · · · ⊕ k. If Mi is the elements of R with 0 in the ith diagonal
position then Si = Un(k)/Mi is simple.

(e) In general, J(R/J(R)) = 0 so 3.9 always applies to R/J(R).

(f) If R is a finite dimension k-algebra and each ∆i = k then k is called a
splitting field for the algebra R.

Proof. See [Web16, 2.1.3].

4 Brauer characters

Definition 4.1. For p prime, call an element of G a p-element or p-singular if
its order is a power of p. Call it p-regular or a p′-element if its order is coprime
to p.

Lemma 4.2. Given g ∈ G, there is a unique p-element x and a unique p′-
element y such that g = xy. Moreover, if h ∈ G commutes with g, then h
commutes with x, y.

Proof. Let ord(g) = n = pαm with (m, p) = 1. By Euclid’s algorithm there are
integers s, t such that spα + tm = 1 so g = gtmgsp

α

. Let x = gtm, y = gsp
α

.
Then xp

α

= ym = 1 so ord(x) | pα and ord(y) | m so x is a p-element and
y is a p′-element. Since x, y are both powers of g any h commuting with g
commutes with both x and y. For uniqueness, suppose x1y1 = x2y2 are both
such decompositions of g. Then x−1

2 x1 = y2y
−1
1 is both a p-element and a

p′-element so must be the identity. Hence x1 = x2 and y1 = y2.

Let M be a CG-module. Recall that there is a class function the ordinary
character

χM : {ccls of G} → C

with χM (g) = Tr(g,M). We have from complex character theory that χM⊕M ′ =
χM + χM ′ , χM⊗M ′ = χMχM ′ and χM = χM ′ =⇒ M ∼= M ′ as CG-modules.
In the modular case, the best we can hope for is the first two conditions and
χM = χM ′ only if M,M ′ have the same multiset of composition factors.
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The problem is that if M is a sum of p copies of M ′, then for all g ∈ G,
Tr(g,M) = pTr(g,M ′) = 0. Our setup to get round this will be as follows. If
char(k) = p then let m = pαm′, p - n′. Then in k[X], Xm − 1 = (Xm − 1)p

α

so k contains all mth roots of unity if and only if it contains all m′th roots of
unity. Xm′ − 1 is separable over k and roots form a cyclic group Cm′ generated
by the primitive m′th roots.

Lemma 4.3. Assume k contains all |G|p′ th roots of unity, where |G|p′ is the p′

part of |G|. Let g ∈ G, ϕ a representation of G. The eigenvalues of ϕ(g) and
the eigenvalues of ϕ(y), where y is the p′th part of g, agree.

Proof. There is a change of basis matrix P such that P−1ϕ(g)P can be written
as an upper triangular matrix with the eigenvalues of ϕ(g) on the diagonal,λ1 ∗ ∗

. . . ∗
λn


Let x be the p-part of g, ord(x) = ps. Then, by the proof of Lemma 4.2, x = gt

for some t. So,

Id = P−1ϕ(xp
s

)P = P−1ϕ(gtp
s

)P = (P−1ϕ(g)P )tp
s

.

This is λ
tps

1 ∗ ∗
. . . ∗

λtp
s

n


so λtp

s

i = 1 for all i. Modulo p, (λtp
s

i − 1) = (λti − 1)p
s

so

P−1ϕ(x)P =

1 ∗ ∗
. . . ∗

1


and the eigenvalues are all 1, and the trace is dimkM . Finally, P−1ϕ(g)P =
P−1ϕ(xy)P = P−1ϕ(x)PP−1ϕ(y)P and hence the eigenvalues of g, y coincide.

Example. If g ∈ G and M is a kG-module then g induces some linear map
on M by X |G| − 1 over k. Now, X |G| − 1 = (X |G|p′ − 1)|G|p and X |G|p′ − 1 is
separable and is therefore a product of linear factors in k[X]. So g has Jordan
canonical form and every eigenvalue of g is a |G|p′th root of 1. So a Jordan
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block of g with λ on the diagonal is conjugate to

g1 =


λ λ

λ
. . .

. . . λ
λ



=


1 1

1
. . .

. . . 1
1



λ

λ
. . .

λ


:= x1y1

Now, x1 is a p-element, since it is of the form Id +(nilpotent) and y1 is a p′-
element since λ is a |G|p′ root of unity. So if g = xy is a decomposition as in 4.2
then the action of the p-element has trace Tr(xM ,M) equal to the dimension.
As xM has entries on the diagonal in Jordan canonical form equal to 1 and yM
is diagonalisable,

Tr(g,M) = Tr(y,M) and Tr(x,M) = dimk(M).

Definition 4.4. For G a finite group, k a field containing all |G|p′th roots of
unity, char(k) = p, the roots form a cyclic C|G|p′ under multiplication. All
the eigenvalues of elements of G belong to this cyclic group. Fix a lifting, an
isomorphism of cyclic groups

ψ :
{
|G|p′ th roots

of 1 in k

}
−→

{
|G|p′ th roots

of 1 in C

}
.

If g is a p′-element of G and M is a finite dimensional kG-module then gM ∼λ1

. . .

λd

 where d = dimkM . The Brauer character of g on M is

χM (g) =

d∑
i=1

ψ(λi) ∈ C.

In fact, χM (g) is a cyclotomic integer. It is defined on all p′-conjugacy classes
of G, and is constant on conjugacy classes.

Example. If k = F2 and G = 〈x〉 = C3 and ρ(x) =

[
0 1
1 1

]
gives a 2-

dimensional representation M . The characteristic polynomial of ρ(x) is t2 +t+1
so eigenvalues are primitive 3rd roots. These lift to primitive third roots in C,
χM (x) = e

2πi
3 + e

4πi
3 = −1. Note that Tr(x,M) = 1 which lifts to 1, but

χM (g) = 1.
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Lemma 4.5. Given two modular representations σ, τ with the same Brauer
character χσ = χτ , for all g ∈ G, σ(g) and τ(g) have the same eigenvalues.

Proof. Let σ(g) have eigenvalues εα1 , . . . , εαa and let τ have eigenvalues εβ1 , . . . , εβb

for some ε. By taking powers we get that the characteristic roots of σ(gi), τ(gi).
Let ζ be a primitive |G|p′th root of unity in C and let ζ = ψ(ε). Then,

ζiα1 + · · ·+ ζiαa = ζiβ1 + · · ·+ ζiβb . (?)

Consider the complex representations

σ′(gi) =

ζ
iα1

. . .

ζiαa

 , τ(gi) =

ζ
iβ1

. . .

ζiβb


of the cyclic group {gi}. By (?), Tr(g, σ′) = Tr(g, τ ′) so the C-characters of
τ ′ and σ′ are equal so their irreducible constituents are the same by complex
character theory. So {α1, . . . , αa}, {β1, . . . , βb} are identical as multisets.

So, recalling Jordan-Hölder, every representation has a fixed number of con-
stituents and they are unique up to equivalence and order of arrangement. As-
sume M has a composition series 0 = M0 ⊆M1 ⊆ . . . ⊆Ml = M . Let B be the
ordered basis B = {e1

1, . . . , e
1
n1
, e2

1, . . . , e
2
n2
, . . . , el1, . . . , e

l
nl
} with e1

1 through to
ejnj a basis of Mj and l the composition length. Let the matrix representation
with respect to B be given by

g 7→


µl(g) ∗ ∗ ∗

µl−1(g)
. . .

...
. . .

...
µ1(g)


where the matrix for µj(g) corresponds to the basis for Mj/Mj−1. We call µl(g)
the top or head, µ1(g) the bottom and the other µi the heart.

Definition. A module M is uniserial if it has a unique composition series.
Equivalently, it has a unique minimal submodule M1, and M/M1 has a unique
minimal submodule, and so on. Equivalently, the submodules are linearly or-
dered by inclusion. (See [Web16, §6, Ex. 3,6]

Theorem 4.6. If k is an algebraically closed field of characteristic p, then for
Tr(g,M) = Tr(g,M ′) for all g ∈ G if and only if for all simple kG-modules S,
the multiplicities of S as a composition factor of M,M ′ agree modulo p.

Proof. Without loss of generality assume M,M ′ are semisimple. If not, we can
replace the submodules with summands to get M,M ′ with the same trace and
composition factors.

12



(⇐= ) If Si is the ith simple summand,

Tr(g,M) =

n∑
i=1

αi Tr(g, Si)

=

n∑
i=1

βi Tr(g, Si)

= Tr(g,M ′).

( =⇒ ) If Tr(g,M) = Tr(g,M ′) for all g ∈ G then Tr(x,M) = Tr(x,M ′) for all x
in the group algebra kG. By Wedderburn 3.9 on kG/J(kG),

r⊕
i=1

niSi ∼= kG/J(kG) = Mn1
(∆1)× · · · ×Mnr (∆r)

with each niSi ∼= Mni(∆i). But every simple S is isomorphic to kG/m for
some maximal ideal m. By the semisimplicity of M,M ′ they are direct
sums of the niSi. The matrix algebras each contain the matrix

1 0 · · · 0

0 0 · · ·
...

...
...

. . .
...

0 · · · · · · 0

 .

Let xi ∈ kG be such that Tr(xi,M) = δij . Then,

Tr(xi,M) =
∑
j

αj Tr(x, Sj) = αi

and Tr(xi,M
′) = βi. So αi = βi in k for all i so αi ≡ βi mod p.

Theorem 4.7 (Brauer). Let M,M ′ be finite dimensional kG-modules. Then,
χm = χM ′ if and only if the multiplicities of each kG-module as composition
factors of M,M ′ are equal.

Proof. As in the proof of 4.6, we may assume without loss of generality that
M,M ′ are semisimple. We have seen that if the multiplicities of simple kG-
modules as factors of M,M ′ are equal then χM = χM ′ so it suffices to prove
the converse.

Consider a counterexample of minimal dimension, χM = χM ′ such that the
multiplicities of the simple kG-modules as factors of M,M ′ do not agree. By
minimality, M,M ′ have no composition factor in common. Since χM = χM ′ ,
4.3 and 4.5 tell us that for all g ∈ G, Tr(g,M) = Tr(g,M ′). Hence, by 4.6

13



the multiplicities of the simple kG-modules as factors of M,M ′ agree modulo
p. Let

M =

m⊕
i=1

γiSi, M ′ =

m⊕
i=1

γ′Si,

so γ ≡ γ′ (mod p) and at most one of γi and γ′i is nonzero for each i. So for
all i, p | γi and p | γ′i. Let γi = pδi, γ

′
i = pδ′i. Then M = pM1 and M ′ = pM ′1

where

M1 =

m⊕
i=1

δiSi, M ′1 =

m⊕
i=1

δ′Si.

Moreover, dimkM = p dimkM1 so dimkM1 < dimkM and χM = pχM1
, χM ′ =

pχM ′1 . So M1,M
′
1 is a counterexample of smaller dimension, a contradiction.

Example. Let G = S3, having three conjugacy classes: the trivial, the trans-
positions, and the 3-cycles. We label the conjugacy classes by cycle length.
The irreducible CG-modules are the trivial k, sign σ, and the 2-dimensional ψ
permuting the co-ordinates of

V =


x1

x2

x3

 , with basis B =

v1 =

 1
−1
0

 , v2 =

 0
1
−1

 .

That is, ψ((123))(v1) = v2, ψ((123))(v2) = −(v1 + v2), and ψ((12))(v1) = −v1,
ψ((12))(v2) = v1 + v2, so with respect to B we have

ψ((123)) =

[
0 −1
1 −1

]
, and ψ((12)) =

[
−1 1
0 1

]
.

The ordinary character table for S3 is given by

1 2 3
1 1 1 1
σ 1 −1 1
ψ 1 0 2

Later, we will show that the irreducible representations of S3 lift to characteristic
0 so Brauer characters form tables that can be recovered by ignoring some of
the rows and columns of the ordinary table.

When p = 3, the conjugacy classes 1, 2 are 3′-conjugacy classes and the
irreducible representations are k, σ. The Brauer character of ψ has ψV (1) = 2,
ψV ((12)) = 0 so ψV = k + σ. By Brauer’s theorem, the composition factors of
ψ are σ, k. So modulo 3 the Brauer character table is

1 2

k 1 1
σ 1 -1

14



In characteristic 2, we want the 2′-classes and the irreducible representations
are k, ψ with the same matrices as in characteristic 0 interpreted as being char-
acteristic 2. So the Brauer character table is

1 3

k 1 1

ψ 2 -1

Recall that the abelianisation Gab of a group G determines the number of
1-dimensional representations of G over C: there are [G : G′] of them. Brauer
gives that there are [G : G′]p′ in characteristic p, giving one such in characteristic
2, two in characteristic 3.

5 Character tables

Recall an algebraic integer is a complex number satisfying a nonzero monic
polynomial over Z, and that the set of algebraic integers form a ring. A number
field is a subfield K of finite degree over Q and OK is the ring of integers in K,
that is, K ∩ {algebraic integers}. If α ∈ K, then there is a nonzero c ∈ Z such
that cα ∈ OK . An integral domain R is a Dedekind domain if it is integrally
closed, Noetherian and every nonzero prime ideal is maximal.

Fact. For every number field K, OK is a Dedekind domain.

Now, for G a finite group, let n = |G| = pαm with p - m, and let char(k) = p.
If k is large enough in the sense that it contains all mth roots of unity, then
these roots of unity form cyclic subgroups C, Ĉ of the multiplicative groups of
k,C respectively. Let K = Q(Ĉ).

Lemma 5.1. Gal(K/Q) ∼= (Z/mZ)×.

Proof. Let ε be a root of the primitive mth cyclotomic polynomial. The Galois
group consists of the maps ε 7→ εi for some i coprime to m, and therefore is
isomorphic to (Z/mZ)×.

Remark. In general, this group is not cyclic. For example if m = 8 then
Z/mZ ∼= C2 × C2.

Let OK be the ring of integers in K, so OK = Z[Ĉ] is a Dedekind domain,
so in particular, all prime ideals are maximal.

Lemma 5.2. Choose a prime ideal p of OK lying over the prime number p,
that is, p ∩ Z = (p). If pr is the smallest p-power such that m | (pr − 1) then:

1. OK/p ∼= Fpr .

2. Ĉ + p ∼= C.

3. Gal(Fpr/Fp) ∼= StabK/Q(p) ∼= Z/rZ.
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Proof. Exercise.

Remark. Sine m is coprime to p, m | (pφ(m) − 1) so r | φ(m).

Example 5.3.

Definition 5.4. The Brauer character table of G modulo p is the table where:

• rows are indexed by simple kG-modules S;

• columns are indexed by conjugacy classes of p′-elements of G;

• entries are the values of the Brauer characters χS(g).

Once a lift ψ : C → Ĉ is fixed, all isomorphisms C → Ĉ are obtained by
applying elements of Gal(K/Q) to Ĉ. So, the rows of the Brauer character
table are the irreducible Brauer characters χS for S simple, and the columns
are ring homomorphisms χ̃ : R(G)→ C, where R is the Grothendieck ring (see
6.1). In fact, the irreducible characters form a basis for the class functions from
conjugacy classes of p′-elements to C, so the table is square, see 6.5.

Proposition 5.5. Applying σ ∈ Gal(K/Q) to a column of the Brauer char-
acter table gives another column of the Brauer character table. Applying τ ∈
StabGal(K/Q)(p) ⊆ Gal(K/Q) to a row of the Brauer character table gies another
row of the Brauer character table.

Proof. (Sketch) If ζ is a primitive mth root of unity in C, K = Q(ζ), an element
σ ∈ Gal(K/Q) sends ζ to ζt with (t,m) = 1. So for each p′-element of G,
χ̃σ(g) = χ̃(gt).

Moreover, σ stabilizes p when t is a pth power. Let S be a simple kG-module
wit corresponding representation ρ : G → GLn(k). Then Sr is a kG-module
with corresponding representation ρσ : G → GLn(k) → GLn(K) where, if
ρ(g) = (λij(g)), ρσ(g) = (λij(g)t).

Hence the Brauer character table is determined by the choice of p up to
permuting roots and coumns. Note that if τ 6∈ StabGal(K/Q)(p) applied to a row
need not give a row.

6 Grothendieck groups

Let G be a finite group, k a field as in §5. We define R(G) = G0(kG).

Definition 6.1. R(G) has generators symbols [M ], where M is an isomorphism
class of finite dimensional kG-modules, and relations [M2] = [M1]+[M3] if there

is a s.e.s. of kG-modules 0 M1 M2 M3 0 .

Remarks. 1. We have to use isomorphism classes of modules rather than
modules themselves in order to obtain a set.
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2. R(G) is a free abelian group with basis [Si], with [Si] simple by Jordan-
Hölder, 0.2.

3. We can make R(G) into a commutative ring by setting [M ][N ] = [M⊗kN ].

4. The trivial module k = k0 is expressible as a difference [M ] − [N ]. Note
that if k = C, R[G] is the ring of virtual characters of CG-modules.

Lemma 6.2. The following hold for Brauer characters.

(i) χM (1) = dimk(M).

(ii) χM is a class function of p′-classes.

(iii) χM (g−1) = χM (g) = χM∗(g).

(iv) If 0 M1 M2 M3 0 is a s.e.s. of finite dimen-

sional kG-modules then χM1 = χM2 +χM3 . I particular, χM depends only
on the isomorphism class of M . If M has composition factors Sj with
multiplicities mj then χM =

∑
jmjχSj .

(v) χM⊗kN = χMχN .

Proof. Exercise.

For all p′-elements g ∈ G, the map χ̃(g) : R(G)→ C sending [M ] to χM (g)
is therefore a well defined ring homomorphism.

Theorem 6.3. The product of these maps

R(G)
∏

ccls of p′-
elements of G

C

[M ] (g 7→ χM (g))

is injective.

Proof. Suppose that [M ]− [N ] and [M ′]− [N ′] have the same image, so χM −
χN = χM ′ − χN ′ , so χM + χN ′ = χN + χM ′ . Then, χM⊕N ′ = χN⊕N ′ so
[M⊕N ′] = [N⊕M ′], so [M ]+[N ′] = [M ′]+[N ] and [M ]−[N ] = [M ′]−[N ′].

Theorem 6.4. The map C⊗ R(G)
∏

ccls of p′-
elements of G

Cχ
is an algebra iso-

morphism.

Corollary 6.5. The simple kG-modules are in bijection with the p′-conjugacy
classes of G.

We will prove 6.4 in a few steps.
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Lemma 6.6 (Injectivity). The irreducible Brauer charcaters χSi are linearly
independent over C.

Proof. Let K ≤ C be a field containing |G|p′th roots of unity, O the ring
of integers in K, and p the prime ideal in O containing (p). Let Op be the
localisation of O at p. Then,

mp =

{
x

y
: x, y ∈ O, x ∈ p, y 6∈ p

}
is the unique maximal ideal of Op, and Op/mp

∼= O/p ↪→ k. Also, Op is a PID
so write mp = (π). Suppose there is a C-linear relation amongst irreducible
Brauer characters. Then there is one over K as all values lie in K, and we can
clear denominators to obtain a relation in O. If all coefficients lie in p, then
divide by a suitable power of π until they do not, and reduce modulo p to get
a relation between traces ∑

αi Tr(xiδj) = 0

for all x ∈ kG. By the Wedderburn trick there is an x ∈ kG such that Tr(xiδj) =
δij so αi = 0 for all i.

To get surjectivity, for each p′-element g ∈ G we find elements x of C⊗kR[G]
such that χ̃(g)(x) = 1 and χ̃(h)(x) = 0. Let g be an element of order m coprime
to p, and let H be cyclic generated by g. The irreducible representations of
h over k are of the form g 7→ ε for ε an mth root of unity. The irreducible

Brauer characters are of the form χj(g) = e
2πij
m with corresponding kG-module

Sj . Define

x :=
1

m

m∑
j=1

e
−2πij
m [Sj ] ∈ C⊗k R[G].

This has Brauer character given by

gt 7→ 1

m

∑
e

2πij(t−1)
m =

{
1 gt = g
0 gt 6= g

.

Lemma 6.7. If H ≤ G and M is a kH-module, then for g ∈ G,

χM↑G =
∑

ccls of h∈H
s.t. h∼g in G

|CG(h) : CH(h)|χM (h).

Proof. g(gi⊗m) = gj ⊗hm where ggi = gjh, h ∈ H, so the matrix representing
the action of g decomposes into blocks corresponding to the g-orbits of G/H.
The blocks corresponding to g-orbits of length greater than 1 are of the form

0 ∗ ∗ ∗
∗ 0 ∗ ∗

0
. . .

. . . ∗
0 0 ∗ 0

 ,
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and the eigenvalues are 0. However, the singleton {gi} is in the orbit of G/H
with corresponding block representing the action of g−1

j ggi ∈ H on M . Then,

χM↑G(g) =
∑

g−1
j ggi∈M

χM (g−1
j ggi).

For h ∈ H, counting the number of pairs (gj , gi) with g−1
j ggi = h gives the

result.

Now, if H ≤ G define IndGH : R(H) → R(G), defined on the basis by
[M ] 7→ [kG⊗M ] and extending the scalars to get a map C⊗ZR[H]→ C⊗ZR(G).
Given a p-element g ∈ G, let H ≤ 〈g〉 and take x ∈ C⊗Z R(H) such that

χx(g′) =

{
1 g′ = g
0 g′ 6= g

Then for g′ ∈ G,

χx ↑G (g′) =
∑

ccls of h∈H
s.t. h∼g′∈G

|CG(h) : CH(h)|χx(h).

This is {
|CG(g) : 〈g〉| if g′ ∼G g

0 if g′ 6∼G g
.

Corollary 6.8 (of 6.4). Every ring homomorphism R(G) → C is of the form
χ̃(g) for g a p′-element of G.

To prove this we need:

6.9. For R a commutative ring with 1, D an integral domain, every set of
distinct ring homomorphisms R→ D is linearly independent.

Proof. Take a linearization of minimal size,

n∑
i=1

λiϕi = 0, where ϕi : R→ D,λi ∈ D.

Choose r0 ∈ R such that ϕ1(r0) 6= ϕn(r0), so for all r ∈ R,

n∑
i=1

λiϕi(r0r) =

n∑
i=1

λiϕi(r0)ϕi(r) = 0 (1)

and

n∑
i=1

λiϕn(r0)ϕi(r) = 0. (2)
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Subtracting (2) from (1) gives that, for all r ∈ R,

0 =

n∑
i=1

λi(ϕi(r0)− ϕn(r0))ϕi(r).

Since D is a domain, λ1(ϕ1(r0)−λn(r0)) 6= 0, so this contradicts the minimality.

Proof of 6.8. Let ϕ : R(G) → C and extend linearly to an algebra homomor-
phism ϕ : C⊗Z R(G)→ C. Do the same for the χ̃(g)s. Then 6.4 and 6.9 give
that χ̃(gi) form a basis of C-linear maps C ⊗ R(G) → C. If ϕ is not χ̃(gi) for
all i, then by 6.9 ϕ, χ̃(gi) are linearly independent, a contradiction.

7 Decomposition matrices and p-modular sys-
tems

Definition 7.1. We denote by O a discrete valuation ring, that is, a PID with
a unique nonzero maximal ideal, where the unique maximal ideal p = (π). A
p-modular system is a triple (K,O, k) where O is a discrete valuation ring, K
the characteristic zero field of fractions of O and k the residue field O/p of
characteristic p. Such a p-modular system is splitting for G if for all subgroups
H of G,

1. KH =
∏
MaiK for some ai;

2. kH/J(kH) =
∏
Mci(k) for some k.

That is, the fields K, k are splitting fields for the semisimple algebras KH and
kH/J(kH).

Note that every finitely generated torsion free O-module is free.

Example. If K is an algebraic number field, O the ring of integers of K so
that K is the field of fractions of O which is integral over Z. There is s p prime
in O lying over (p) and the localisation Op at p is a discrete valuation ring so
(K,Op,O/p) is a p-modular system.

Remark. If K contains |G|th roots of 1, (K,O,O/p) is a splitting p-modular
system for G.

Given a p-modular system, (K,O, k) V an ordinary finite dimensional KG-
module with a K-basis v1, . . . , vd, let W = spanO{gvi | 1 ≤ i ≤ d, g ∈ G}. This
is finitely generated and torsion free as an O-module and it is therefore free and
a subset of V .

Let w1, . . . , wn be a free O-basis. Then the {wi} span V , and if there is a
linear relation between them over K, then since the field of fractions of O is K
we can clear denominators to obtain a relation in O. But since the basis is free
no such relation exists, so {w1, . . . , wn} is a K-basis fro V and n = d. Changing
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the basis vi → wi ensures that all entries in matrix representations of G are in
O, and we may write

V = K ⊗O W

W is called an O-form for V (and is not unique).

Theorem 7.2. If (K,O, k) is a splitting p-modular system and W,W ′ are O-
forms of V then the kG-modules k ⊗O W = W = W/pW and k ⊗W ′ have the
same Brauer character (and therefore the same composition factors by Brauer).

Proof. The Brauer character of W is the values of the p′-elements of the ordinary
character of V : suppose the ordinary character is ϕV and g is a p′ element
with eigenvalues λ1, · · · , λn on W then g acts on W with eigenvalues λi + (π).
The Brauer character is by definition the sum of the lifts of these, and so is
λ1 + · · ·+ λn.

Definition 7.3. If V1, . . . , Vl are irreducible KG-modules and W1, . . .Wl are
corresponding O-forms, with S1, . . . Sm the irreducible kG-modules then the
decomposition matrix D has:

• rows indexed by {Vi};

• columns indexed by Sj ;

• entries dij given by
dij = [k ⊗O Wi : Sj ]

the multiplicity with which Sj appears as a composition factor of k ⊗O
Wi = Wi/pWi, the decomposition number

Examples 7.4. (a) If G = A5 then the ordinary character table is

1 2 3 5 5
1 1 1 1 1
31 −1 0 φ 1− φ
32 −1 0 1− φ φ
4 0 1 −1 −1
5 1 −1 0 0

where φ = 1+
√

5
2 . View this as a matrix, X.

If char(k) = 2 then the Brauer character table B is

1 3 5 5
1 1 1 1
21 −1 φ− 1 −φ
22 −1 −φ φ− 1
4 1 −1 −1
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and the decomposition matrix D is given by

D =


1 0 0 0
1 1 0 0
1 0 1 0
0 0 0 1
1 1 1 0


where the rows are indexed by 1, 31, 32, 4, 5 and the columns by 1, 21, 22, 4.

The matrix DB is the 5 × 4 matrix, which is X with the second column
deleted. The ith row of D is the modular composition factors of M =
M/pM , M an irreducible kG-module.

(b) If G = S3 in characteristics 2,3, then

D(2) =

1 0
1 0
0 1

 , D(3) =

1 0
0 1
1 1


where the columns are indexed by the trivial and ψ and the trivial and σ
respectively.

(c) If G is a p-group and char(k) = p then D has a single column and the entry
for each ordinary irreducible is the degree of the ordinary irreducible, so
G has a unique irreducible module modulo p.

(d) (See [Web16, 9.4.11]) If (K,O, k) is a splitting system for G and (|G|, p) =
1 then each simple KG-module reduces to a simple kG-module of the same
dimension, and D = Id.

(e) (Fong, Swan, Rukolaine) Take a splitting system (K,O, k), p-modular for
G p-solvable. Every irreducible kG-module is reduction mod (π) of OG-
lattice. In particular, D contains Id as a submatrix of maximal possible
size.

8 Projective modules

Let R be a ring with 1 and let M be an R-module.

Definition 8.1. An R-module P is projective if for all surjective R-module
homomorphisms M ′ → M and R-module homomorphisms P → M there is a
homomorphism P →M ′ such that the following diagram commutes.

P

M ′ M 0
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I is said to be injective if for all injective homomorphisms M →M ′ and homo-
morphisms M → I there is a homomorphism M ′ → I such that the following
diagram commutes.

I

M ′ M 0

Lemma 8.2. The following are equivalent.

(i) P is projective;

(ii) Every surjective homomorphism M P 0λ splits, that is, there
is an ε : P →M such that λ ◦ ε = IdP ;

(iii) P is isomorphic to a direct summand of a free module;

(iv) For all short exact sequences of R-modules 0 → U → V → W → 0 the
sequence 0 → HomR(P,U) → HomR(P, V ) → HomR(P,W ) → 0 is exact
on the right.

Lemma 8.3. If k is a field and G a group, then every kG-module embeds into
a free module.

Proof. Define φ : M → kG⊗kM by

φ(m) =
∑
g∈G

g ⊗ g−1m

so the target space is the restriction of M to the trivial followed by induction
up to G, and the action of G is given by g′(g⊗m) = gg′⊗m. There is a vector
space splitting ψ : kG ⊗k M → M with ψ(g ⊗ m) = m if g is trivial and 0
otherwise. This shows that φ is injective. For h ∈ G,m ∈M ,

φ(hm) =
∑
g∈G

g⊗ g−1(hm) =
∑
g′∈G

hg′ ⊗ (g′)−1m = h
∑
g′∈G

g′ ⊗ (g′)−1m = hφ(m)

where g′ = h−1g. So φ is a kG-homomorphism. Since k is a field, M ↓{1} is
free (it’s a vector space) as a k-module and M =

⊕
k. So kG ⊗k M is a free

kG-module.

Lemma 8.4. If M is a kG-module, the following are equivalent:

(i) M is projective;

(ii) M is injective;

(iii) (Higman) There is a k-linear λ : M →M with
∑
g∈G gλg

−1 = IdM .

Proof. .
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(ii) =⇒ (i): If M is injective there is an α such that the following diagram commutes:

0 M kG⊗kM

M

β

Id
α

So, we may realise M as a direct summand of the free module kG⊗k M ,
so M is projective.

(iii) =⇒ (ii): Fix a k-linear map γ not necessarily a kG-homomorphism with γβ = α
below.

0 M1 M2

M

β

α
γ

λ

Define γ′ =
∑
g∈G g(λγ)g−1. This is a kG homomorphism:

hγ′(m) =
∑
g∈G

hg(λγ)g−1m =
∑
g′∈G

g′(λγ)(g′)−1hm = γ′(hm)

where we set g′ = hg. Moreover, since α, β are kG-homomorphisms,

γ′β =
∑
g∈G

g(λγ)g−1β =
∑
g∈G

g(λγβ)g−1 =
∑
g∈G

g(λα)g−1 = (
∑
g∈G

gλg−1)α

This is Idm ◦α = α. So γ′ makes the diagram above commute, so M is
injective.

(i) =⇒ (iii): If M = kG set λ(
∑
αgg) = α11G so that∑

h∈G

hλh−1(
∑
g∈G

αgg) =
∑
h∈G

hλ(
∑
g∈G

αgh
−1g) =

∑
h∈G

hαh1G =
∑
g∈G

αgg.

So
∑
h∈G hλh

−1 = IdM for M = kG. We may apply this construction
to any free kG-module M by applying λ to each factor. If M is not
free, it is a summand of a free module by projectivity, F = ⊕kG so let
λM = πλF ι, where π, ι are projection and inclusion respectively. Then

M Fι
π λF and we have∑

g∈G
gλmg

−1 =
∑
g∈G

g(πλF ι)g
−1 =

∑
g∈G

πgλF g
−1ι = π IdF ι = IdM .
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9 Idempotents

Theorem 9.1. (Krull-Schmidt) Let R be a finite-dimensional k-algebra, M a
finitely generated R-module, and suppose that M =

⊕s
i=1Mi =

⊕t
i=1M

′
i are

two independent decompositions of M into indecomposables. Then s = t and
after reordering M ′i

∼= Mi.

Note we can apply this in the cases of finitely generated OG-modules, finitely
generated kG-modules, R modules of finite length, but not when R is not ar-
tinian, e.g. ZG-modules.

Corollary 9.2. Under the conditions of Krull-Schmidt,

1. If M is indecomposable summand of M1⊕· · ·⊕Mr with Mi indecomposable,
then M ∼= Mi for some i.

2. Every finitely generated projective indecomposable R-module is isomorphic
to a summand of RR.

This is clear: any projective P is a summand of R⊕ · · · ⊕R so apply (i).
Write RR = P1 ⊕ · · · ⊕ Ps, for Pi projective indecomposables.

Fact. R ∼= End(RR)op (c.f. proof of Artin-Wedderburn) so the endomorphism

π :R R Pi RR
project inj

is right multiplication by some ei ∈ R so Pi = Rei and 1 = e1 + · · ·+ es, where
the ei are idempotents.

Definition 9.3. Let R be a ring with 1. An idempotent is an e ∈ R such that
e2 = e. Note if e is idempotent, then so is 1− e, and e(1− e) = 0. Idempotents
e, e′ are called orthogonal if ee′ = e′e = 0, e is primitive if it cannot be written
as e = e′ + e′′ for e′, e′′ nonzero orthogonal idempotents.

There is a 1-1 correspondence

{Direct sum decompositions RR = P1 ⊕ · · · ⊕ Ps, Pi projective}

{1 = e1 + · · ·+ es with ei primitive idempotents}

Recall Artin-Wedderburn: R/J(R) =
∏t
i=1Mdi(∆i) for R a finite dimen-

sional k-algebra. If Ti = Mdi(∆i), TiTi =
⊕

(columns of length di) =
⊕
Si.

(see sheet 1 question 8) with the Si simple and isomorphic as isotypical com-
ponents. Let (eij) be the di × di matrix with the (j, j)th entry 1 and all other
entries 0. For the matrix ring Ti,

1Si = ei1 + · · ·+ eidi

and

1R/J(R) = e11 + · · ·+ e1d1 + e21 + · · ·+ e2d2 + · · ·+ et1 + · · · etdt
Let R× be the group of invertible elements in R.
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Example. R = Mn(k), 1 = e1 + · · ·+ en, ei =

 1

 with the 1 in the ith

position. Then every projective is of the form Rei =


∗
∗
∗
∗

 and Rei ∼= Rej

even if i 6= j.

This motivates the following: define an equivalence relation on idempotents
in R by conjugacy: e ∼ e′ ⇐⇒ ∃r ∈ R× such that re = e′r. Note e ∼ e′ ⇐⇒
(1− e) ∼ (1− e′).

Lemma 9.4. Let e, e′ be idempotents in R. Then e ∼ e′ if and only if Re ∼= Re′

and R(1− e) ∼= R(1− e′).

Proof. ( =⇒ ) e ∼ e′ =⇒ er = re′ for some r ∈ R× so Rer = Rre′ = Re′r
implies Re ∼= Re′, (multiplication on the right by r). Similarly, R(1 − e)r =
Rr(1− e′) = R(1− e′).

(⇐= ) Let

Re Re′ and R(1− e) R(1− e′)
∼=(θ) ∼=(φ)

There is an isomorphism

HomR(Re,M) eM

λ λ(e)

Since λ(e) = λ(ee) = eλ(e) ∈ eM . Using this, define µ1 ∈ eRe′ ↔ θ, µ2 ∈
e′Re↔ θ−1, µ3 ∈ (1− e)R(1− e′)↔ φ and µ4 ∈ (1− e′)R(1− e)↔ φ−1.

Then µ1µ2 = e, µ2µ1 = e′, µ3µ4 = (1 − e), µ4µ3 = (1 − e′). Also, r =
µ1 +µ3 ∈ R× since (µ1 +µ3)(µ2 +µ4) = e+0+0+(1−e) = (µ2 +µ4)(µ1 +µ3).

So, r−1er = e′ so e′ ∼ e.

So, to find projective indecomposables in RR it suffices to find them in
R/J(R) using Wedderburn and lift to R. R a f.d. algebra =⇒ N = J(R) is a
nilpotent ideal (using Nakayama’s lemma).

Theorem 9.5 (Idempotent Refinement). Let R be a ring with 1, N a nilpotent
ideal of R and e, e′ idempotents in R/N . Then:

(i) There is an idempotent f ∈ R such that f = f +N = e, with f primitive
if and only if e is primitive;

(ii) f ∼ f ′ implies that f +N ∼ f ′ +N .
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Proof.

Corollary 9.6. Let N be a nilpotent ideal in a ring R and 1 = e1 + · · · + es
a sum of orthogonal idempotents in R/N . Then there is a decomposition 1 =
f1 + · · ·+ fs in R into orthogonal idempotents such that fi +N = ei. If the ei
are primitive, so are the fi.

Proof.

Corollary 9.7. Let f be idempotent in R, I a nilpotent ideal. The f is primitive
if and only if f + I is primitive in R/I.

Proof. ( =⇒ ) by Theorem 9.5 (i).
( ⇐= ) If f = f1 + f2 and f1f2 ∈ I for f1, f2 idempotent then f1, f2 6∈ I so

(f1 + I)(f2 + I) = 0 and (f1 + f2) + I = f + I gives the result.

10 Projective indecomposable modules

Throughout, let R be a finite dimensional k-algebra and k a field. For M an
R-module,

J(M) = ∩(maximal submodules)

= (smallest submodule with semisimple quotient)

= J(R)M

and

soc(M) =
∑

(simple summands of M)

= (largest simple submodule)

= {m ∈M : J(R)m = 0}.

By Wedderburn, R/J(R) =
∏s
i=1Mdi(∆i) for ∆i finite dimensional k-

division algebras. 1Mdi
has primitive orthogonal decomposition into idempo-

tents ei1 + · · ·+eidi corresponding to the simple modules Si (given by columns).
So,

1R/J(R) = e11 + · · ·+ e1d1 + · · ·+ es1 + · · ·+ esds

with eij ∈Mdi(∆i) having (j, j)th entry 1, and all other entries 0. Lifting to R
we get a primitive orthogonal idempotent decomposition

1R = e11 + · · ·+ e1d1 + · · ·+ es1 + · · ·+ esds

where eij ∼ ekl ⇐⇒ eij ∼ ekl ⇐⇒ i = k.
Hence we get a decomposition into projective indecomposable modules

RR = Re11 ⊕ · · · ⊕Re1d1 ⊕ · · · ⊕Res1 ⊕ · · · ⊕Rsds

with Reij ∼= Rekl ⇐⇒ k = i.

27



Moreover, for each i, j,

Reij/J(Reij) = Reij/J(R)eij = (R/J(R))eij = (R/J(R))eij ∼= Si

where Si is a simple R-module. Write PSi = Pi for the module isomorphic to
Reij for some j (it does not matter which j we choose). Then Pi is a projective
indecomposable and Pi/J(Pi) ∼= Si.

So, there are s isomorphism classes of projective indecomposable R-modules
Pi for 1 ≤ i ≤ s and each has a unique maximal submodule J(R)Pi. We call Pi
the projective cover of Si.

Example 10.1. (i) If k is a field of characteristic p and G is a p-group,
R = kG then the unique simple R-module is k. J(R) is the augmentation
ideal, R/J(R) = k and the unique projective indecomposable is RR of
length |G| with all factors trivial.

(ii) G = S3 = {1, σ, σ2, τ, στ, σ2τ}, k = F3, R = kG. There are two simple left
kG-modules:

• The trivial k with annihilator the augmentation ideal;

• sign, with annihilator {
∑
λgg : λ1 +λσ+λσ2 = λτ +λστ +λσ2τ = 0}.

J(R) is the intersection of the annihilators, which is the annihilator of
sign, which has k-basis {1− σ, 1− σ2, τ − στ, τ − σ2τ}. So,

R/J(R) ∼= M1(k)⊕M2(k)

where Mi(k) = 〈−(1± τ) + J〉. Now, e1 = −(1 + τ) and e2 = −(1− τ) are
primitive idempotents in R so the projective indecomposable modules are
given by

• Corresponding to e1,

P1 = R(1 + τ) = {
∑

λgg : λ1 = λτ , λσ = λστ , λσ2 = λσ2τ}

= 〈1 + τ, σ + στ, σ2 + σ2τ〉
= projective cover ot the trivial.

• Corresponding to e2,

P2 = R(1− τ) = projective cover of sign.

A composition series for P1 is:

P1 ⊇ JP1 = 〈1 + τ − σ − στ, 1 + τ − σ2 − σ2τ〉
⊇ T1 = 〈1 + σ + σ2 + τ + στ + σ2τ〉
⊇ 0
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with P1/JP1 and T1 both trivial R-modules. The action of R on JP1/T1

is determined by:

τ · (1 + τ − σ − στ + T1) = τ + 1− τσ − τστ + T1

= 1 + τ − σ2τ − σ2 + T1

= −(1 + τ − σ − στ)− (1 + σ + σ2 + τ + στ + σ2τ) + T1

= −(1 + τ − σ − στ) + T1

so JP1/T1 is the sign R-module so not all factors are trivial. Similarly for
P2,

P2 ⊇ JP2 ⊇ T2 ⊇ 0.

(iii) Z has no projective cover for any G.

Let R be a finite dimensional k-algebra for k a field and let M be a finitely
generated R-module. Then M/J(M) is semisimple, ∼=

⊕N
1 Sj for Sj simple

R-modules. For each j, let PSj = Pj be the projective cover. Consider the
diagram: ⊕N

1 Pj

M M/J(M) ∼=
⊕N

1 Sj 0

π

Since
⊕N

1 Pj is projective there is a hom π :
⊕N

1 Pj → M such that this
commutes. We claim that π is surjective. Let N ′ be the image of π. Then
N ′+J(M) = M so J(R)M/N ′ = (J(R)M+N ′)/N ′ = (J(M)+N ′)/N ′ = M/N ′

so by Nakayama’s lemma N ′ = M .
We call

⊕N
1 Pj the projective cover of M . There is a short exact sequence

0 ΩM M M/J(M) 0

where ΩM = Ker(π) is called the Heller translate of first syzygy.

Aside on Duality

Let M be a left R-module. M∗ = HomK(M,K) is a right R-module with
action (f · r)(m) = f(rm) for f ∈ M∗, r ∈ R,m ∈ M . Similarly if M is a
right R-module, M∗ is a left R-module and if M is finite dimensional then M ∼=
M∗. Since HomK(−,K) is an exact contravariant functor from the category
of left R-modules to the category of right R-modules and vice versa there is a
correspondence

{M f.g. projective left module} ↔ {M∗ f.g. injective right module} .

In the case R = kG, G finite, M left →M right, mg = g−1m.
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As a consequence of the above, if I is injective decomposable, it has a unique
minimal (simple) submodule soc(I) and every simple R-module Sj has an in-
jective decomposable R-module ISj = Ij which has Sj as its unique simple
submodule, soc(Ij) = Sj .

Definition. ISj is called the injective hull of Sj .

Now let M be a finitely generated R-module. Then we have the following
diagram: ⊕

Ij

0 soc(M) ∼=
⊕
Sj M
φ

where φ exists by injectivity of
⊕
Ij . Note that φ|soc(M) is injective. Let

N = Ker(φ) ≤ M If N 6= 0, soc(N) = soc(N ∩ M) = N ∩ soc(M) 6= 0, a
contradiction. Therefore φ is injective. Accordingly, we call

⊕
Ij the injective

hull of M . We have an isomorphism soc(M) ∼= soc (
⊕
Ij) and a short exact

sequence

0 M
⊕
Ij fM 0

where fM = coker(φ). Note that Ω,f are not inverse to one another.

Theorem 10.2. Let G be a finite group, K a field and P a projective indecom-
posable KG-module. Then P/J(P ) ∼= soc(P ).

Proof. We know P = KGf for f a primitive idempotent. Let y ∈ soc(P )\{0},
y =

∑
g αgg. For any b =

∑
g λgg, c =

∑
g µgg the coefficient of 1 in bc is∑

g λgµg−1 =
∑
g−1 λg−1µg which is the coefficient of 1 in cb. y 6= 0 so there

is some h ∈ G so that αh 6= 0. So, z = h−1y has a nonzero coefficient of the
identity. z ∈ KGf so zf = z so zf has a nonzero coefficient of 1, so fz has a
nonzero coefficient of 1 so fz 6= 0. Therefore, f soc(P ) 6= 0.

As seen in Lemma 9.4,

HomKG(P, soc(P )) = HomKG(KGf, soc(P )) ∼= f soc(P ) 6= 0

so there is a non-zero homomorphism φ : P → soc(P ). P is injective (since
it is projective) and indecomposable so soc(P ) is simple. Therefore, Ker(φ) is
a maximal submodule, so Ker(φ) = J(P ). The theorem then follows from the
first isomorphism theorem.

Remark. This holds for “symmetric algebras” of which group algebras are an
example.

Lemma 10.3. Let R be a finite-dimensional K-algebra where K is a splitting
field for R, that is, R/J(R) =

∏
Mdi(K). Let M be a finitely generated R-

module. For S simple, dimK(HomR(PS ,M)) = [M : S].
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Proof. By induction on the composition length of M . If M = S′ then since K
is a splitting field,

dimK HomR(PS , S
′) = dimK HomR(S, S′) =

{
1 S ∼= S′

0 otherwise

by Schur’s lemma. If M is not irreducible choose a maximal M ′ (M , so there
is a short exact sequence

0 M ′ M M ′′ 0.

As PS is projective, HomR(PS ,−) is exact so

0 HomR(PS ,M)′ HomR(PS ,M) HomR(PS ,M
′′) 0.

is exact. Dimensions add, as do the number of factors isomorphic to S. M ′,M/M ′

have composition length strictly shorter than M so we are done by induc-
tion.

11 Cartan invariants

Throughout, let G be a finite group, k a field of characteristic p, and let the
irreducible kG-modules be denoted Si with their projective covers Pi.

Definition 11.1. Let cij = [Pj : Si]. The matrix C = (cij) is the Cartan
matrix and the cij are called the Cartan invariants.

Theorem 11.2. (i) If k is a splitting field for G, cji = cij.

(ii) If (K,O, k) is a splitting p-modular system for G then

cij =
∑
l

dlidlj

so C = DTD.

(iii)* det(C) is a power of p, and in particular is nonzero.

In order to prove this, we need some preparation on idempotent lifting.
Let O be a complete DVR with unique maximal ideal p, and O/p ∼= k. So,

OG/p2OG = lim←−
n

OG/pnOG. (?)

Since the canonical surjection OG/p2OG→ OG/pOG has kernel pOG/p2OG =
kOG, which squares to zero, a primitive orthogonal decomposition

1 = e1 + · · ·+ es ∈ KG = Im(OG/p2OG→ OG/pOG) (3)
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lifts to

1 = e21 + · · ·+ e2s ∈ OG/p2OG. (4)

Similarly, via the canonical surjection OG/p3OG→ OG/p2OG we get a lift

1 = e31 + · · ·+ e3s. (5)

in OG/p3OG of (4).
Continuing, we get a primitive orthogonal decomposition up to level n: in

OG/pnG we have
1 = en1 + · · ·+ ens

such that enj + pn−1 = e(n−1)j for all n, j. By (?) this terminates: there is an
ej ∈ OG such that ej + pn = enj for all n.

Now, e2
j defines the same inverse system of elements as ej does, so e2

j = ej .
Similarly, we can show

1 = e1 + · · ·+ es

is a primitive orthogonal decomposition of 1 in OG. We have proved the fol-
lowing.

Theorem 11.3. If 1 = e1 + · · · + es is a decomposition of 1 into primitive
orthogonal idempotents in kG then we can lift to a decomposition 1 = e1+· · ·+es
in OG. Moreover, conjugation is preserved.

Consequently, the decomposition of kG into projective indecomposables

kG = PS1
⊕ · · · ⊕ PS1︸ ︷︷ ︸

d1

⊕ · · · ⊕ PSn ⊕ · · · ⊕ PSn︸ ︷︷ ︸
dn

lifts to a decomposition of OG,

OG = P̂S1
⊕ · · · ⊕ P̂S1︸ ︷︷ ︸

d1

⊕ · · · ⊕ P̂Sn ⊕ · · · ⊕ P̂Sn︸ ︷︷ ︸
dn

Proof off 11.2(ii). Given (K,O, k) a splitting p-modular system for G, with
simple KG-modules {Vi}, O-forms {Wi}, Vi = K⊗OWi. Calculating and using
10.3,

[K ⊗O P̂Sj ] = dimK HomKG(K ⊗O PSj , Vi).

By the definition of Wi this is

dimK HomKG(K ⊗O PSj ,K ⊗O Wi).

This is a statement in characteristic zero. We now claim

(a)

dimK HomKG(K ⊗O PSj ,K ⊗O Wi) = dimK(K ⊗HomOG(P̂Sj ,Wi))

= rankO(HomOG(P̂Sj ,Wi))
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(b)

rankO(HomOG(P̂Sj ,Wi)) = dimk HomkG(PSj , k⊗Wi) = [k⊗OWi : Sj ] = dij

(a) holds because O is a PID, so P̂Sj ,Wi,HomOG(P̂Sj ,Wi) are O-free. Given a

KG-homomorphism K ⊗O P̂Sj → K ⊗O Wi, some nonzero multiple sends P̂Sj
into Wi by finite generation and clearing denominators, using O-freeness. So,
the map

K ⊗HomOG(P̂Sj ,Wi)→ HomKG(K ⊗O PSj ,K ⊗O Wi)

sending λ ⊗ ϕ to λϕ is an isomorphism. The second equality follows since P̂Sj
is projective.

(b) holds since k ⊗− induces a map

HomOG(P̂Sj ,Wi))→ HomkG(PSj , k ⊗Wi)

which is surjective with kernel pHomOG(P̂Sj ,Wi).
Hence,

cij = dimk HomkG(PSi , PSj ) = rankO HomOG(P̂Si , P̂Sj )

= dimK HomKG(K ⊗ P̂Si,K ⊗ P̂Sj )

=
∑
l

dlidlj .

Remarks. 1. If R is a finite dimensional k-algebra, k a splitting field, and
P a projective indecomposable, then if k ⊂ k′, k′ ⊗ P is a projective
indecomposable k′ ⊗R-module.

2. The decomposition matrix can be read in two ways:

• rows are modular composition factors of modular reductions of ordi-
nary irreducibles.

• columns are ordinary composition factors of lifts of modular projec-
tive indecomposables.

Also, DTD = C is the modular composition factors of modular projective
indecomposables.

3. Decomposition number dij are independent of the choice of O-form Wi of
Vi.
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Example. IfG = A5 and p = 2, the rows ofD are indexed by χ1, χ3a, χ3b, χ4, χ5

and the columns by 1, 21, 22, 4,

D =


1 0 0 0
1 1 0 0
1 0 1 0
0 0 0 1
1 1 1 0

 .

Our new information says that K ⊗O P̂K = 1⊕ 3a ⊕ 3b ⊕ 5.

12 Blocks

Throughout, let G be a finite group, R a commutative ring with 1. The centre
of the group ring RG, Z(RG) is the free R-module with basis conjugacy class
sums in G. That is,

∑
αgg ∈ Z(RG) if and only if g ∼ g′ implies that αg = αg′ .

So, there is a ring homomorphism Z(OG) → Z(kG) induced by the canonical
surjection O � k. A central idempotent in R is an idempotent in Z(R). A
centrally primitive idempotent is an idempotent in Z(R) which is primitive in
Z(R).

Definition 12.1. A block of R is an indecomposable two-sided ideal direct
factor of R (when R is a direct product).

Krull-Schmidt 9.1 implies that if R is a finite dimensional algebra then
R = B1 × · · · ×Bs. This decomposition corresponds to

1 = e1 + · · ·+ es

with the ei orthogonal centrally primitive idempotents. Note Bi = eiR, ei ∈
Z(R) since for all r ∈ R,

eir = ei(re1 + · · ·+ res) = eirei = (e1r + · · ·+ esr)ei = rei,

since eirej ∈ BiBj and is therefore the identity since the product is direct.
Also, if 1 = e′1+· · ·+e′t with the ei orthogonal centrally primitive idempotents

then
ei = ei1 = eie

′
1 + · · ·+ eie

′
t

with each eie
′
j centrally primitive in Z(R):

(eie
′
j)(eie

′
l) = eie

′
jeie

′
l = e2

i e
′
je
′
l =

{
eie
′
j j = l

0 j 6= l.

Since ei is primitive there is a unique j such that ei = eie
′
j = e′j , so s = t and

ei = e′i.
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Definition 12.2. If M is an R-module then M = e1M ⊕ · · · ⊕ esM as R-
submodules of M . If M is indecomposable, there is a unique i such that M =
eiM and ejM = 0 for all j 6= i. Say M lies in or belongs to Bi or ei and write
M ∈ ei or M ∈ Bi.

In particular, simple modules lie in a block.
Notice that HomR(eiM, ejM) = 0 if i 6= j: if f : eiM → ejM then

f(m) = f(eim) = ejf(eim) = ejeif(m) = 0.

So M is in ei if and only if each of its direct summands belongs to ei. An
indecomposable R-module lies in a unique block, that is, the block ei such that
eiM 6= 0.

Lemma 12.3. Let e be a block of R. If 0 U V W 0
is a s.e.s. of R-modules then V ∈ e if and only if U,W ∈ e. In other words,
submodules and quotients of V belong to e.

Proof. A module belongs to e if and only if muliplication by e acts as an iso-
morphism, which holds for V if and only if it holds for both U and W .

Examples. 1. If R is a finite dimensional semisimple k-algebra then the
blocks are matrix summands of R, each block idempotent is the identity
of some matrix summand. If R = CG then the defining idempotents are
determined by the ordinary characters.

2. If G is a p-group, char(k) = p then the regular representation is inde-
composable as a module and therefore as a ring. So, the only possible
idempotent is the identity, and there is a unique block.

Let R = kG and refine 1 = e1+· · ·+es in Z(R) to 1 = ê1+· · ·+ês in Z(OG).
Our indecomposable OG-modules also lie in blocks. If V is an irreducible KG-
module, choose an O-form W of V . Then there is a i such that êiW 6= 0 and
êjV = 0 for all j 6= i.

Remark. We can think of a block as a bucket into which we put “stuff”:

• indecomposable kG-modules;

• indecomposable OG-modules;

• simple KG-modules.

Let Vi be a simple ordinary irreducible and suppose Sj is a simple modular
irreducible. If Vi lies in a different block to Sj , then dij = 0. The block to which
the trivial module belongs is called the principal block. We will now develop a
criterion for a simple module to be in a particular block.

Lemma 12.4. If R is a commutative finite dimensional k-algebra then R is a
product of local rings.
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Proof. Wedderburn 3.9 implies that R/J(R) =
∏
Mdi(∆i). Since R is com-

mutative, the ∆i = ki are finite extensions of k. We have a decomposition
1 = e1 + · · · + es in r/J(R). J(R) is nilpotent so we can use idempotent re-
finement to lift to 1R = e1 + · · · + es, so R = R1 × · · · × Rs where Ri = eiR.
So,

Ri/J(Ri) = eiR/eiJ(R) ∼= ei(R/J(R)) = ki

where ki is a field. Therefore, J(R) is maximal and is therefore the unique
maximal ideal by definition of J(R), so Ri is local.

If R is a finite dimensional k-algebra and k is a splitting field then there are
k-algebra homomorphisms λ : R→ k given by projection onto the factors.

Definition 12.5. If R is a finite dimensional k-algebra, a central character or
central homomorphism of R is a ring homomorphism Z(R)→ k.

Example. If R is a finite dimensional k-algebra and S is a simple R-module
with EndR(S) = k, then if k is a splitting field each z ∈ Z(R) acts on S by
λs(z) giving a central homomorphism of R.

Proposition 12.6. Let R be a finite dimensional k-algebra with a block decom-
position 1 = e1 + · · ·+ es.

(i) Z(R) = e1Z(R) × · · · × esZ(R) is a block decomposition of Z(R). Each
eiZ(R) is a local ring and for each simple R-module S there is an inclusion

eiZ(R)/J(eiZ(R)) ↪→ EndR(S)

(ii) If R is finite dimensional over a splitting field k, k is a splitting field for
Z(R) and eiZ(R)/J(eiZ(R)) ∼= k. There is a 1-1 correspondence between
central homomorphisms ωi and blocks Bi such that ωi(ej) = δij.

Proof. (i) A decomposition of 1 as a sum of orthogonal centrally primitive
idempotents in R, Z(R) are the same thing, so there is a block decompo-
sition Z(R) = e1Z(R)×· · ·×esZ(R). Also, eiZ(R) ∼= EndZ(R)(eiZ(R)) is
a local ring because, for any ring Λ and idempotent e, eΛe ∼= EndΛ(eΛ). If
S is a simple R-module in the ith block then eiZ(R) acts nontrivially on S
as endomorphisms as ei acts by Id on the relevant block. So there is a non-
trivial map eiZ(R)→ EndR(S). Since eiZ(R) is local and EndR(S) is a di-
vision ring, there is an induced injection eiZ(R)/J(eiZ(R)) ↪→ EndR(S).

(ii) If k is a splitting field then there are maps

k ↪→ eiZ(R)/J(eiZ(R)) ↪→ EndR(S) ↪→ k

which compose to give Id. In other words, Z(R)/J(Z(R)) is a direct
product of s copies of k and the central homomorphisms ωi are the s
projection operators.
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Example 12.7. Let K be a splitting field for KG, char(K) = 0. We will
construct a central homomorphism of KG with respect to a simple KG-module,
V . Let {Ci | i ∈ I} be the set of conjugacy classes of G.

Let Ĉi =
∑
g∈Ci g. We can calculate Tr(Ĉi, V ) in two different ways:

• If Ĉi acts via the scalar λ ∈ K, Tr(Ĉi, V ) = λ dimK V.

• χV (g) = χV (h) if g ∼ h so Tr(Ĉi, V ) is |Ci|χV (g) = |G : CG(g)|χV (g) for
any g ∈ Ci.

So,

λ =
|G : CG(g)|χV (g)

dimK(V )

and there is a central homomorphism λV : Z(KG)→ K defined by

λV (Ĉi) =
|G : CG(g)|χV (g)

dimK(V )
.

Theorem 12.8. The λV (Ĉi) are algebraic integers.

Proof. Z(ZG) has Z-basis consisting of Ĉi, so suppose

ĈiĈj =
∑
l

aijlĈl

with aijl ∈ Z. Since λV is a central homomorphism, it is a homomorphism of
rings and

λV (Ĉi)λV (Ĉj) =
∑
l

aijlλV (Ĉl).

So, Im(λV ) is a subring of K, a finitely generated abelian group. Since α :=

λV (Ĉi) is in the image there is a chain of subgroups

〈1〉 ≤ 〈1, α〉 ≤ 〈1, α, α2〉 ≤ . . .

which eventually terminates, so αn ∈ 〈1, α, . . . , αn−1〉 for some n ∈ N, so so α
is an algebraic integer.

Recall that for (K,O, k) a p-modular system, all algebraic integers in K lie
in O so there is a ring homomorphism λV : Z(OG) → O. Reducing mod p,

we get λV : Z(kG) → k. Note if ai ∈ p, then
∑
aiλV (Ĉi) is in p so λV is

well-defined.
If V ∈ e with e ∈ Z(kG), ê ∈ Z(OG), ê acts as the identity on V so

λV (ê) = 1, so λV (e) = 1. If W is an O-form then every composition factor of
k ⊗O W = W , so for example S satisfies λŜ = λV , where Ŝ is S lifted to O.

Theorem 12.9. Let V, V ′ be irreducible KG-modules. V, V ′ are in the same
block if and only if λV ≡ λV ′ (mod p). That is, for each g ∈ G,

|G : CG(g)|χV (g)/dimk V ≡ |G : CG(g)|χV ′(g)/ dimk V
′.
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Example. G = A5 has 5 conjugacy classes. Let the representatives be σ1 = Id,
σ2 = (12)(34), σ3 = (123), σ4 = (12345), and σ5 = (12354). The corre-
sponding class sizes are 1,15,20,12, and 12. Let V1, . . . V5 be representations of
non-isomorphic KG-modules. Then, the table with (i, j)th entry

λVi(ĈG(σj)) =
|G : CG(σj)|χVi(σj)

dimk Vi

is

dimk(Vi) σ1 σ2 σ3 σ4 σ5

V1 1 1 15 20 12 12

V2 3 1 -5 0 2(1 +
√

5) 2(1−
√

5)

V3 3 1 -5 0 2(1−
√

5) 2(1 +
√

5)
V4 4 1 0 5 -3 -3
V5 5 1 3 -4 0 0

The classification into blocks, for p = 2 is V1, V − 2, V3, V5;V4. For p = 3,
V1, V4, V5;V2;V3, and for p = 5, V1, V2, V3, V4;V5.

Remarks. 1. λV is independent of choice of p (see [Isa06, 15.8]).

2. V, V ′ reduced mod p have common composition factors if and only if they
are in the same block.

13 Defect groups

Let C be a conjugacy class in G.

Definition 13.1. A defect group of C is a Sylow p-subgroup of CG(g) for some
g ∈ C. This defines a conjugacy class of p-subgroups associated with C. If P is
a p-subgroup of G, C is P -defective if P contains sonce element of C.

Lemma 13.2. Suppose ĈiĈj =
∑
l aijlĈl ∈ Z(ZG). Fix a triple (i, j, l). Then,

if p - aijl and Cl is P -defective then so are Ci, Cj.

Proof. Choose z ∈ Cl and suppose z commutes with P . Let

Ω = {(x, y) ∈ Ci × Cj | xy = z}.

Recall |Ω| = aijl. Since p - aijl, and aijl is the sum of the cardinalities of
the P -orbits of Ω which are either 1 or divisible by p, there is a fixed point
(x, y) ∈ Ci × Cj . That is, gxg−1 = x and gyg−1 = y. Hence both Ci and Cj are
P -defective.

If P is a p-subgroup of G, let Z(OG)P be the set of all sums
∑
aiCi where

ai ∈ O and if a defect group of the ith class is not conjugate to a subgroup of
P , then ai ∈ p. Note that if P ≤G P ′ (that is, P is G-conjugate to a subgroup
of P ′) then Z(OG)P ⊆ Z(OG)P ′ .
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Lemma 13.3. Z(OG)P is an ideal of Z(OG).

In order to prove the lemma, we will first show the following:

Proposition 13.4. If P1, P2 are p-subgroups of G then

Z(OG)P1
Z(OG)P2

⊆
∑

P≤GP1
P≤GP2

Z(OG)P .

Proof. Let I be the right hand side. Since pZ(OG) ⊆ Z(OG)P for any p-
subgroup P of G, it suffices to show that whenever Ci is a conugacy class whose
defect group is conjugate to a subgroup of P1 and Cj is a conjugacy class whose

defect group is conjugate to a subgroup of P2, then ĈiĈj ⊆ I.

Now, ĈiĈj =
∑
l aijlĈl. If aijl ≡ 0 (mod p) then aijl ∈ Ĉl ∈ pZ(OG) ⊆ I.

If aijl 6≡ 0 (mod p) then let P be a defect group of Cl. Clearly, Ĉl ∈ Z(OG)P
and by 13.2 both Ci, Cj are P -defective so P ≤G P1, P ≤G P2 so Ĉl ∈ I. So,

ĈiĈj ∈ I.

Proof (of 13.3). If P ∈ Sylp(G) then Z(OG)P = Z(OG). So, apply 13.4 with
P1 or P2 a Sylow p-subgroup.

Definition 13.5. If e is a block (idempotent) in Z(OG) then a defect group of
e is a minimal P -subgroup P of G such that e ∈ Z(OG)P .

13.6. The defect groups of any given block are conjugate.

In order to prove this, we will need the following.

Lemma 13.7 (Rosenberg’s Lemma). Let R be a ring and e an idempotent of
R. Suppose eRe is local (that is, it has a unique maximal two-sided ideal). We
know eRe = EndR(R)op. If c ∈

∑
α Iα where the Iα are two-sided ideals, then

there is an α such that c ∈ Iα.

Proof. Since e is an idempotent and contained in
∑
α Iα, e ∈

∑
α eIαe. Since

eRe has a unique maximal 2-sided ideal, e = IdeRe so not all eIαe can be in the
maximal ideal. So, there is an α such that eIalphae = eRe ⊆ Iα.

Proof (of 13.6). If e ∈ Z(OG)P1
∩ Z(OG)P2

then by 13.4,

e = e2 ∈
∑

P≤GP1
P≤GP2

Z(OG)P .

So, by 13.7, there is a p-subgroup P of G such that P ≤G P1, P ≤G P2

and e ∈ Z(OG)P . If P1, P2 are minimal then P1 ∼G P and P2 ∼G P so
P1 ∼G P2.
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14 Relative projectivity and the transfer map

The transfer map

Let H ≤ G. G acts on OG by conjugation. The fixed points are (OG)G =
Z(OG), and (OG)H has a O-basis consisting of H-conjugacy class sums in G,
{x ∼H y if and only if ∃h ∈ H,hxh−1 = y}. If x ∈ (OG)H define

TrGH(x) =
∑

g∈G/H

gxg−1

where G/H is a set of representatives of left cosets of H in G. To see that
this is independent of choice of coset representatives, let two choices of coset
representatives be {g1, . . . , gt} and {g1h1, . . . , gtht}. Then, with respect to the
second set,

TrGH(x) =

t∑
i=1

gihixh
−1
i g−1

i = sumt
i=1gixg

−1
i

since x is H-invariant.
We call TrGH the transfer map and denote the image by (OG)GH .

Lemma 14.1. (i) If H ≤ K ≤ G,

TrGK TrKH(x) = TrGH(x).

(ii) TrKH ResKH is multiplication by [K : H].

(iii) (OG)H is an ideal of Z(OG).

Proof. For the third part, let x ∈ (OG)H , y ∈ (OG)G. Then TrGH(x) · y is given
by TrGH(xy). For the rest of the proof, see [Web16, 11.3.1, 11.3.2, 11.3.3.]

Lemma 14.2. Suppose P is a Sylow p-subgroup of H. Then (OG)H = (OG)GP .

Proof. If x ∈ (OG)H then x = TrHP

(
1

[H:P ]x
)

so

TrGH(x) = TrGH TrHP

(
1

[H : P ]
x

)
= TrGP

(
1

[H : P ]
x

)
.

Lemma 14.3. If P is a p-subgroup of G then Z(OG)P = (OG)GP + pZ(OG).

Proof. Take a P -conjugacy class sum in G, and transfer it up to G. If g is in a
P -conjugacy class,

TrGP (
∑

x∈ reps
of P/CP (g)

xgx−1) = sumx∈G/CP (g)xgx
−1 = |CG(g)CP (g)|Ĉg

where Cg is the G conjugacy class containing g. But |CG(g) : CP (g) is not
divisible by p if and only if CP (g) is a defect group of Cg containing g, which is
equivalent to P containing a defect group of Og.
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Lemma 14.4. If e is a primitive idempotent in Z(OG) with defect group D,
then e ∈ (OG)GD, that is, there is an x ∈ (OG)D such that e =

∑
g∈G/D gxg

−1.

Proof. Use 14.3 and 13.7.

Corollary 14.5. If N is an indecomposable OG-module lying in a block with de-
fect group D there is an endomorphism θ ∈ EndOD(M) such that

∑
g∈G/D gθg

−1 =
IdM .

Proof. Let e be a block idempotent. Then by 14.4,
∑
gxg−1 = e for some

x ∈ (OG)D, and e acts on M by the identity whilst x as an OD-endomorphism
θ.

Relative Projectivity

Let R be a commutative ring.

Definition 14.6. Let H ≤ G, and let M be an RG-module. M is (relatively)
H-projective if in any diagram of the form below, whenever the dotted arrow
exists as an RH-module homomorphism making the diagram commute, it also
exists as an RG-module homomorphism making the diagram commute.

M

M ′ M 0

Dually, M is said to be (relatively) H-injective if in any diagram of the form be-
low, whenever the dotted arrow exists as an RH-module homomorphism making
the diagram commute, it also exists as an RG-module homomorphism making
the diagram commute.

M

M1 M2 0

Theorem 14.7 (Relative version of 8.4). Let H ≤ G, and let M be an RG-
module. The following are equivalent.

(i) M is H-projective;

(ii) M is H-injective;

(iii) (Higman) There is a θ ∈ EndRH(M) such that
∑
g∈G/H gθg

−1 = IdM ;

(iv) M is isomorphic to a direct summand of U ↑GH for some RH-module U ;

(v) M is isomorphic to a direct summand of M ↓H↑G;
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(vi) The natural surjective RG-module homomorphism M ↓H↑G� M taking
g ⊗m to gm splits;

(vii) The natural injective RG-module homomorphism M ↪→ M ↓H↑G taking
m to

∑
g∈G/H g ⊗ g−1m splits.

Proof. Let H ≤ G and let M be an RG-module.

(vi) + (vii) =⇒ (v) =⇒ (iv) is immediate.

(i) =⇒ (vi): the map in (vi) has an H-splitting given by m 7→ 1⊗m.

(ii) =⇒ (vii): the map in (vii) has an H-splitting given by g⊗m 7→
{
gm g ∈ H
0 otherwise

.

(iii) =⇒ (i) Consider the diagram

M

M1 M2 0

ρ

θ

γ

α

where ρ is an RH-homomorphism such that γ = αρ. Set

ρ′ =
∑

g∈G/H

gρθg−1.

Then ρ′ is an RG-homomorphism with αρ′ = γ.

(iii) =⇒ (ii) is similar.

(iv) =⇒ (iii) If M = U ↑G let θ′ ∈ EndRH(M) be defined by

θ′(g ⊗m) =

{
gm g ∈ H
0 otherwise.

If M is a summand of U ↑G then

θ : M U ↑G U ↑G Mθ′

works.

Examples. If R is commutative then RG is 1-free (∼= R ↑G). Projective
modules are 1-projective, and over a field the notions of projectivity and 1-
projectivity agree. Every RG-module is G-projective.

Consequently, if B is a block of OG with defect group D and block idem-
potent e, and if M is an OG-module such that eM = M then M is a direct
summand of a module induced from D ( 14.5) and 14.7 implies that every
module with defect group D is D-projective.
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15 Examples of blocks 1: defect 0

Recall that a block of G is the specification of a block idempotent e of OG, also
the corresponding block of kG, also the modules which belong to these blocks,
the KG-modules which belong to these blocks, also the ring direct factors eOG
and ekG of kG.

Definition 15.1. If B is a block of OG or kG with defect group D of order pa,
then we say D is a block of defect a.

Suppose B is a block of defect 0, that is, D = {1}. Let e be a block
idempotent. We can ask which kG-modules lie in B. An induced kG-module
from {1} is free so every kG-module in B is a summand of such a thing, hence
is projective.

It is easy to show by induction that ever finitely generated kG-module in B
is semisimple. Hence, J(ekG) = 0. By Wedderburn 3.9 ekG ∼=

∏
Mni(∆i).

Consequently, there is only one isomorphism class of simple kG-modules S,
but everything is projective, so S is simple and projective. Since S is a projective
kG-module, idempotent refinement 9.5 implies that it lifts uniquely (up to

isomorphism) to a projective OG-module, Ŝ. Then, K ⊗O Ŝ is a simple KG-
module. Since the columns of the decomposition matrix give the composition
factors of K ⊗O Ŝ it follows that the decomposition and Cartan matrices are
(1).

Proposition 15.2. If B is a block of defect 0, the simple module in B has
dimension divisible by the p-part of the group order, |G|p.

Proof. Let P ∈ Sylp(G). Let S be simple in B. Then S ↓P is a projective
kP -module since S is a projective kG-module. But the unique projective in-
decomposable kP -module is kP . So, S ↓P is a direct sum of copies of kP . In
particular, the dimension is divisible by |P |.

Lemma 15.3. kP has a unique simple module, and hence a unique projective
indecomposable.

Proof.

We might hope that if char(k) = p and S is a simple kG-module of dimension
divisible by |G|p, then S is necessarily projective, but this turns out to be false.
In the 1980s, John Thackray showed that the sporadic simple group McL has
a simple module in characteristic two of dimension 29 · 7. This module is not
projective, and the 2-part of the group order is 27.

The decomposition matrix of kP has only one column with entry dimV
corresponding to the simple KP -module dimV . Let W be an O-form for V .
Then the composition factors for k ⊗O W are k of multiplicity dimV . If E is
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the decomposition matrix, then

E =


...

dimV
...


so the Cartan matrix ETE is (|P |) since |P | =

∑
(dimV )2 as V runs over the

representations of the simple modules.

15.4 ((Open) problems: local-global conjectures). In 1963, Brauer’s Problem 19
appeared: can the number of blocks of defect 0 of a finite group G be described
in terms of the group theoretic invariants of G? It was solved by G. Robinson
in 1983.

The Alperin-McKay conjecture states that the number of simple kG-modules
is given by ∑

ccls of p-subgroups
D≤G, including 1=D

|{blocks of defect 0 of NG(D)/D}|

The McKay conjecture (1972) states that there is a count of chaacters of p′-
degree, whereas the conjecture above is concerned with characters whose degree
has maximal possible p-part. The McKay conjecture says that, for P ∈ Sylp(G),
if Irrp′(G) is the set of irreducible characters χ with p - χ(1),

| Irrp′(G)| = | Irrp′(NG(p))|.

16 Examples of blocks 2: blocks of finite type

For reps of (Z/pnZ) in chatacteristic p, consider Jordan canonical form for a
generator. For an indecomposable representation there is a single Jordan block.
Xpn − 1 = (X − 1)p

n

so the eigenvalues are all 1. So, the Jordan block has the
form

J =


1 1 0 0 0
0 1 1 0 0
...

. . .
. . .

. . .
...

0 0 0 1 1
0 0 0 0 1

 .
︸ ︷︷ ︸

d

The order of this matrix is the smallest p-power bigger than d: the entries
appearing in Jn are

(
n
i

)
for some 0 ≤ i ≤ n and with n always appearing directly

above the diagonal, so the order is pa for some a. If pa < d then some entry
strictly above the diagonal is 1, so we must have pa ≥ d. If 1 ≤ d ≤ pa then
since p |

(
p
a

)
for all 1 ≤ a ≤ pa − 1, Jp

a

= Id. Consequently, there are pn

isomorphism classes of indecomposable k(Z/pnZ)-modules and they correspond
to blocks of size d where 1 ≤ d ≤ pn.
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Definition 16.1. Say that a ring A has finite (representation) type if there are
finitely many isomorphism classes of indecomposable A-modules, otherise say A
has infinite (representation) type.

Example 16.2. If a block of kG has a cyclic defect group D then there are
only a finite number of indecomposable kG-modules lying in the block. (Every
indecomposable is a direct summand of (Jordan block for D)↑G where D is the
defect group of the given block.)

Theorem 16.3. Let R ∈ {O, k}, and let P ∈ Sylp(G). Then, RG has finite
representation type if and only if RP has finite representation type.

Proof. [G : P ] is invertible in R so every RG-module M is a summand of some
module U ↑GP (by 14.2). Without loss of generality, we may assume U is in-
decomposable, for if it splits as U = U1 ⊕ U2, U ↑G= U1 ↑G ⊕U2 ↑G and
Krull-Schmidt 9.1 applies. So, the indecomposable summands of G are the in-
decomposable summands of U1 ↑G together with the indecomposable summands
of U2 ↑G.

If RP has finite type then there are only finitely many modules U ↑GP with
U indecomposable, and by Krull-Schmidt 9.1 there are only finitely many iso-
morphism classes of summands. hence RG is of finite type.

Conversely, every RP -module U is a direct summand of U ↑GP ↓GP by 14.7,
hence a direct summand of some V ↓GP . If U is indecomposable, we can assume
V is indecomposable, and if RG has finite type there are only finitely many
possibilities by Krull-Schmidt 9.1, hence RP has finite type.

Consequently, (Z/pnZ) has finite type over a field of characteristic p so by
16.3, groups with cyclic Sylow p-subgroups have finite type. Amazingly, the
converse is also true.

Example 16.4. If G = Cp × Cp, suppose it is generated by g, h. Let k be an
infinite field of characteristic p. For each λ ∈ k we can construct an indecom-
posable kG-module Mλ with matrix representation

g 7→
[
1 1
0 1

]
, h 7→

[
1 λ

1

]
.

If λ 6= µ then it is straightforward to see that Mλ 6∼= Mµ, so we have an
infinite number of indecomposable non-isomorphic kG-modules.

In fact, the group algebra k(Cp × Cp) has infinitely many indecomposables
of any given dimension (see [Web16]).

Theorem 16.5 (D. Higman). Let char(k) = p. Then, kG has finite type if and
only if the Sylow p-subgroups of G are cyclic.

Proof. By 16.3 we may assume that G is a p-group. By the discussion at the
start of the chapter, k(Z/pnZ) has finite type, so suppose P is a non-cyclic
P -group. Then, P has Cp ×Cp as a homomorphic image. To see this, let Φ(P )
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be the Frattini subgroup of P , that is, the smallest N / P such that P/N is
elementary abelian: the group analogue of the Jacobson radical.

So, P/Φ(P ) is elementary abelian isomorphic to Cp × · · · × Cp︸ ︷︷ ︸
d multiplicands

and P can

be generated by d things and no fewer. Since P cannot be generated by a single
element, d ≥ 2.

Hence, we may lift each non-isomorphic indecomposable representations
of Cp × Cp to get an infinite number of indecomposable non-isomorphic kP -
modules.

17 Brauer’s First Main Theorem

This section will prove that, for R ∈ {O, k} there is a 1-1 correspondence be-
tween blocks of RG with defect group D, and blocks of RNG(D) with defect
group D. It turns out that it suffices to consider the case r = k, because
reduction mod p preserves D.

Lemma 17.1. Suppose D is a p-subgroup of G and char(k) = p. Then:

(i) (kG)D = kCG(D)⊕
∑
D′<D(kG)DD′ , and

(ii) (kG)NG(D) = (kCG(D))NG(D) ⊕
∑
D 6≤Q≤NG(D)(kG)

NG(D)
Q .

In each case this is a direct sum of a subring and a 2-sided ideal.

Proof. For the first, part, let D act by conjugation. The space (kG)D has basis

over k consisting of the D-conjugacy class sums, Ĉg,D =
∑
x∼Dg x. If the orbit

has length one then Ĉg,D ∈ kCG(D), otherwise let D′ = CD(g) < D, with left
coset representatives δ1, . . . , δs of D′ in D. So,

Ĉg,D =

s∑
i=1

δigδ
−1
i ∈ (kG)DD′

as Ĉg,D is precisely the set {δ1gδ−1
1 , . . . , δsgδ

−1
s }. Finally, kCG(D)∩

∑
D′<D(kG)DD′ =

{0} in characteristic 0 by definition of the transfer map and since D′ < D has
index pk for some k.

The second part is left as an exercise. The idea is to split the orbit of NG(D)
into pieces, on some of which the action is trivial and on the remainder of which
there are no fixed points. In each case, the right hand side is a 2-sided ideal by
14.1.

Remarks. (i) follows from a general result about permutation representations,
see [Web16, 12.5.3].

The intersection being {0} fails over O, but there is a correspondence be-
tween blocks of kG and blocks of OG preserving defect groups, so in counting
blocks we can work over k without loss of generality.
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Definition 17.2. We define the Brauer morphism as the ring homomorphism
given by projection BrD : (kG)D → kCG(D) given by projection onto the
first factor in 17.1(i). Since the second factor is a 2-sided ideal, this is a
homomorphism.

Remark. In a sense, we are really only interested in the map BrD : Z(kG)→
Z(kCG(D)) obtained by restriction, since this is where the central idempotents
live. Recall Z(kG) = (kG)G ≤ (kG)D. The point of the more general definition
is seen in 17.6.

Theorem 17.3. Let G be a finite group with a normal p-subgroup D. Then
every block idempotent in the centre Z(kG) lies in kCG(D).

Proof. Suppose S is a simple kG-module. Then SD is a nontrivial kG-submodule
of S since S ↓GD contains a copy of the trivial module. So, SD = S and D acts
trivially on S. Now, kG/J(kG) is semisimple so D must act trivially on it. In
characteristic p, kG/J(kG)DD′ = 0 for any D’¡D, for if x ∈ (kG)D

′
, s ∈ S then

Tr′DD (x) · s =
∑

g∈D/D′
gxg−1 · s =

∑
D/D′

x · s.

This is [D : D′]x · s and p | [D : D′] so∑
D′<D

(kG)DD′ ≤ J(kG).

Let e be a block idempotent in kG. Write e = x + y with x ∈ kCG(D), y ∈∑
D′<D(kG)DD′ . Now, x2 + xy = xe = ex = x2 + yx, so x, y commute so

e = ep
n

= (x + y)p
n

= xp
n

+ yp
n

for all n. Taking n sufficiently large, yp
n

= 0
since the radical is nilpotent. So, e = xp

n ∈ kCG(D).

Corollary 17.4. If CG(D) ≤ D / G then kG has only one block.

Proof. CG(D) is a p-group since it is a subgroup of D and the group algebra of
a p-group has all idempotents either 0 or 1. So, kCG(D) has only one nonzero
idempotent, namely 1 (since 1 simple module means one projective indecom-
posable). Now apply 17.3.

If H ≤ G such that DCG(D) ≤ H ≤ NG(D) then 17.3 says that every
idempotent in Z(kH) lies in kCG(D). Let e ∈ Z(kH) be a primitive idempotent
corresponding to the direct factor b of kH. Let

1 = e1 + · · ·+ es

be a decomposition into primitive orthogonal idempotents in Z(kG). This cor-
responds to the block decomposition of

kG = B1 × · · · ×Bs.

47



Then, in the centre of kH we have that

e = e1 = eBrD(1) = eBrD(e1 + · · ·+ es)

= eBrD(e1) + · · ·+ eBrd(es).

Since e is primitive, e = eBrD(ei) for some I and eBrD(ej) = 0 for all
j 6= i. Define the Brauer correspondent bG of B to be the block Bi of kG. In
general the Brauer correspondence just defined is not 1-1 but when H = NG(D),
Brauer’s First Main Theorem says that there is a 1-1 correspondence between
blocks with defect group D.

Lemma 17.5. Let char(k) = p, e be a block of kG, D ≤ G. The following are
equivalent.

(i) The block e ∈ Z(kG) has defect group D;

(ii) e ∈ (kG)GD and BrD(e) 6= 0;

(iii) D is a maximal subgroup of G such that BrD(e) 6= 0.

Proof. We first claim that A central idempotent e lies in (kG)GD if and only if
its defect group De is G-conjugate to a subgroup of D. This follows from the
definition of the defect group of e, using that, if De ≤G D,

Z(kG)De ⊆ Z(kG)D.

Now suppose e has defect group D. We now claim that BrD(e) 6= 0. By
definition, e 6∈ (kG)DD′ for all D′ <G D. Equivalently, e 6∈

∑
D<GD

(kG)DD′ by
Rosenberg’s Lemma 13.7. As

ker BrD ∩(kG)GD =
∑

D′<GD

(kG)DD′ ,

we have that BrD(e) 6= 0. This also shows that BrD(e) = 0 if D < De.
We now claim that BrD(e) is a primitive idempotent. The fact that it is an

idempotent follows from the fact that BrD is a ring homomorphism. To see that
it is primitive, one way is to use a general form of idempotent refinement,

Lemma. If A,B are finite dimensional k-algebras and I, J are ideals of A,B
respectively and f : A → B is an algebra homomorphism such that f(I) = J ,
then if we have that e is a primitive idempotent of A contained in I such that
f(e) 6= 0 then f(e) is a primitive idempotent of B.

The proof of this lemma is the same as the proof of idempotent refinement,
9.5.

The map is also injective and surjective by 17.6.

So D has both minimal and maximal properties.

Remark. Compare 17.5(iii) to 13.5 which says a defect group D is minimal
amongst subgroups for which e ∈ TrGD(x) for some x ∈ (kG)D.
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Theorem 17.6. We have a commutative diagram:

(kG)D kCG(D)

(kG)GD kCG(D)
NG(D)
D

BrD

TrGD Tr
NG(D)

D

BrD

In words, “transfer followed by Brauer is the same as Brauer followed by trans-
fer.”

Proof. Observe (kG)GD ⊆ (kG)G = Z(kG) ⊆ (kG)D. Also, kCG(D) = (kCG(D))D

and kCG(D)
NG(D)
D ⊆ Z(kCG(D)).

Let x ∈ (kG)D,

TrGD(x) =
∑

g∈D\G/D

TrGD∩gDg−1(gxg−1),

since for each (D,D)-double coset representative g ∈ G, we can take the set
of left coset representatives δ(g) = {δg,1, . . . , δg,n(g)} of D ∩ gDg−1 in D, and
then we get a set of left coset representatives {δg,i · g} of D in G, see [Web16,
11.3.1.(4)].

We now have two cases: either D ∩ gDg−1 is a proper subgroup of D or it
is all of D. If D ∩ gDg−1 is a proper subgroup of D,

BrD TrDD∩gDg−1(gxg−1) = 0

because we multiply by indices which are p-powers. So, the only terms that
contribute have D ∩ gDg−1 = D which occurs if and only if g ∈ NG(D).

So,

Br(TrGD(x)) =
∑

g∈D\NG(D)/D

BrD TrDD

=
∑

g∈NG(D)/D

BrD(gxg−1)

by the normality of D in NG(D).
Now, since NG(D) acts on both kCG(D) and

∑
D′<D(kD)DD′ respectively so

BrD(TrD(x)) =
∑

g∈NG(D)/D

gBrD(x)g−1

= Tr
NG(D)
D (BrD(x))

and BrD commutes with Tr
NG(D)
D . The bottom map is surjective by general

nonsense.
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Theorem 17.7 (The Brauer Correspondence). BrD induces a 1-1 correspon-
dence between block idempotents in Z(kG) with defect group D and primi-

tive idempotents in (kCG(D))
NG(D)
D . The correspondence is given by sending

e ∈ (kG)GD to BrD(e).

Corollary 17.8 (Brauer’s First Main Theorem, 1944,1956,1970). Let k be a
field of characteristic p that is a splitting field for G and all of its subgroups.
Let D be a p-subgroup of G and let H be a subgroup of G containing NG(D).
Then there is a one-to-one correspondence between the blocks of kG with defect
group D and the blocks of H with defect group D.

Proof. Since NG(D) ≤ H ≤ G, CH(D) = CG(D) and NH(D) = NG(D). So we
have {

block idempotents in
Z(kG) with defect group D

}
{

block idempotents in
Z(kH) with defect group D

} {
primitive idempotents in

kCG(D)
NG(D)

D =kCH(D)
NH (D)

D

}
using 17.7 twice.

Exercise. Show that if b is a block of kNG(D) with defect group D then bG is
the corresponding block of kG with defect group D. (See [Web16, 12.6.4].)

An extended version of Brauer’s main theorem is the following: there is a
correspondence between blocks of kNG(D) with defect group D, and NG(D)-
conjugacy classes of blocks b of k(DCG(D)/D) of defect 0 such that p - [Stab(b) :
DCG(D)] under the action of NG(D) by conjugation.

Brauer’s second main theorem says that the Green correspondence is com-
patible with the Brauer correspondence.

Brauer’s third main theorem says that the Brauer correspondent of a block
is principal if and only if that block is the principal block.

These are covered in [Ben98, §6], [Alp86] and [Thé95].
On cyclic defect groups, the Brauer tree algebras describe the structure of

projective indecomposable modules graph theoretically.
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