
Lie Algebras and their Representations

Notes by Eve Pound∗

Based on lectures by Dr Beth Romano

1 Lie Algebras in the Wild

1.1 Where do Lie algebras come from?

A Lie group is (essentially) a group that is also a smooth manifold, for example
GLn,SLn,SOn,Sp2n. Let G be a Lie group. Then the Lie algebra of G is
the tangent space at the identity g = TeG. g is a vector space with additional
structure.

By taking a differential we can turn the conjugation map

GÐ→ Aut(G)

g z→ g(⋅)g−1

into a map
ad ∶ gÐ→ End(g).

This gives a bilinear map

[⋅, ⋅] ∶ g × gÐ→ g

[x, y]z→ ad(x)y.

We will often drop the comma for brevity.

Example. If G = GLn(R),g =Mn×n(R) and [xy] = xy − yx

1.2 What are Lie algebras good for?

1. They tell us about the structure of G.

Example. We’ll define the root system of g. This tells you about com-
mutator relations in G (See Carter, Simple Groups of Lie Type).

Example. We’ll define the Weyl group of g. For example, the Weyl group
of GLn(C) is Sn. There is an embedding Sn ↪ GLn(C) via permutation
matrices permuting a basis.

∗corrections to ep455@cam.ac.uk
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Let B be an upper triangular matrix in G. Then

G = ⊔
w∈Sn

BwB (Bruhat decompostion).

2. They tell us about representation theory.

Example. There’s a bijection

{finite dim representations of SLn(C)}↔ {finite dim representations of Lie(SLn(C))}.

We will completely describe the right hand side.

3. They have applications to algebraic geometry. It’s possible to use Lie
algebras to build families of surfaces or algebraic curves (see Slodowy,
Simple Singularities and Simple Algebraic Groups).

We’ll define the Dynkin diagram of a semisimple Lie algebra

Example.

This tells you about singularities on surfaces.

4. They have applications to Number Theory. Root systems / Weyl groups
give structure of groups over Qp (see paper of Iwahori-Matsumoto)

The local Langlands correspondence predicts a relationship

{Galois Theory of local fields}↔ {Complex Lie Theory}

There are many other applications that we have not mentioned here (for
example to algebraic groups and theoretical physics).

2 Basic Definitions and Examples

Definition. Let k be a field. A Lie algebra over k is a vector space g over k
with a bilinear pairing

[⋅, ⋅] ∶ g × gÐ→ g “Lie Bracket”

such that

1. [xx] = 0 ∀x ∈ g

2. [x[yz]] + [y[zx]] + [z[xy]] = 0 ∀x, y, z ∈ g (The Jacobi Identity).

Exercise. Check that this definition implies that [xy] = −[yx] (Antisymmetry
of the bracket).
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By definition, [x + y, x + y] = 0. So by bilinearity we have

0 = [x + y, x + y] = [x + y, x] + [x + y, y] = [xx] + [xy] + [yx] + [yy],

so [xy] = −[yx], as by definition we have [xx] = [yy] = 0

Definition. h is a subalgebra of g if h is a subspace of g and [xy] ∈ h for all
x, y ∈ h.

Examples. Let V be a finite dimensional vector space over k.

1. Let gl(V ) = End(V ) with bracket given by [xy] = xy − yx, where the
multiplication is in the endomorphism ring. It is clear [xx] = 0.

Exercise. Check the Jacobi identity.

[x[yz]] + [y[zx]] + [z[xy]] = x(yz − zy) − (yz − zy)x + y(zx − xz) − (zx −
xz)y + z(xy − yx) − (xy − yx)z. Regrouping, this is x(yz − zy + zy − yz) +
y(−zx + zx − xz + xz) + z(yx − xy + xy − yx) = 0.

If we choose a basis for V we can identify gl(V ) with the space of n × n
matrices over k, so we often write gl(V ) as gln.

2. Let sl(V ) = {x ∈ gl(V ) ∣ tr(x) = 0}. This is a subspace, as trace is lin-
ear, and closed under the Lie bracket, as trace is symmetric, so it’s a
subalgebra.

Note that dim(sl(V )) = n2 − 1. We take the standard basis:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−1

0
⋱

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

−1
⋱

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ⋯

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0

⋮ ⋱
⋱

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 . . . 0
0

⋮ ⋱
⋱

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ⋯

and we often write sln.

3. Assume char(k) /= 2. Suppose V is endowed with a symmetric bilinear
form

⟨⋅, ⋅⟩ ∶ V × V Ð→ k.

Let so(V ) = {x ∈ gl(V ) ∣ ⟨xv,w⟩ = −⟨v, xw⟩ for all v,w ∈ V }.
In co-ordinates, we know that there is a matrix M ∈ GL(V ) such that
⟨v,w⟩ = vTMw, so

so(V ) = {x ∣Mx + xTM = 0}.
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We’ll usually take

M =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0 Il
Il 0

] if n = 2l

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 0 Il
0 Il 0

⎤⎥⎥⎥⎥⎥⎦
if n = 2l + 1.

2.0.1 Warm Up for Lecture 2

Let

e = [0 1
0 0

] , f = [0 0
1 0

] , h = [1 0
0 −1

]

viewed as matrices in sl2(C) - the standard basis from lecture 1. Then we
have

[ef] = h, [he] = 2e, [hf] = −2f

We’ll see that in some sense the structure of all semisimple Lie algebras come
from sl2(C).

Continuing the examples from last time, and recalling that we had V a
k-vector space,

4. Again, assume char(K) /= 2, and suppose that V is endowed with a non-
degenerate skew-symmetric bilinear form ⟨⋅, ⋅⟩ (that is, ⟨v,w⟩ = −⟨w, v⟩).

Exercise. Check 3,4 are Lie subalgebras of gl(V ).

Then,
sp(V ) = {x ∈ gl(V ) ∣ ⟨xv,w⟩ = −⟨v, xw⟩ ∀v,w ∈ V }.

In co-ordinates we’ll take ⟨, ⟩ to be the skew-symmetric form associated to

[ 0 Il
−Il 0

] where n = 2l. Note n must be even as V has a skew-symmetric form.

5. V is a Lie algebra with bracket [vw] = 0 for all v,w.

Note: Our definition of gl(V ) makes sense for V infinite dimensional.

Definition. A linear transformation ϕ ∶ g Ð→ h between two Lie algebras
is a homomorphism if [ϕ(x)ϕ(y)] = ϕ([xy]) for all x, y ∈ g. If ϕ is also an
isomorphism of vector spaces it is a isomorphism.
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3 Representations Part 1

Let g be a Lie algebra.

Definition. A representation of g is a Lie algebra homomorphism gÐ→ gl(V )
for some V .

Notation. • We also call V itself a representation.

• We also write g↻ V and say “g acts on V .”

• We write x ⋅ v or xv for ϕ(x)(v).

Definition. The dimension of the representation is dim(V ).

Examples. 1. (The trivial representation) Let V be a 1-dimensional vecotr
space. Then g↻ V via x ⋅ v = 0 for all x ∈ g, v ∈ V .

2. (The defining representation) If g is defined as a subalgebra of gl(V ) there
is a natural inclusion g↪ gl(V ).

3. (The adjoint representation) For x ∈ g define adx ∶ g Ð→ g, y z→ [xy].
Then, the map

gÐ→ gl(g)

xz→ adx

is the adjoint map.

This is a Lie algebra homomorphism: we’ll check [adx, ady](z) = ad([xy])(z).
The left hand side is

[x[yz]] − [y[xz]] = −[[zx]y] − [[yz]x] = [[xy]z]

which is the right hand side, where the last step is an application of the
Jacobi identity.

Example. Recalling the multiplications in the warm up, the adjoint rep-
resentation of sl2(C) (with basis {e, h, f} in that order) has

ad(h) =
⎡⎢⎢⎢⎢⎢⎣

2
0

−2

⎤⎥⎥⎥⎥⎥⎦
, ad(e) =

⎡⎢⎢⎢⎢⎢⎣

0 −2 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
, ad(f) =

⎡⎢⎢⎢⎢⎢⎣

0 0 0
−1 0 0
0 2 0

⎤⎥⎥⎥⎥⎥⎦

4. If V,W are representations so is V ⊕W via x ⋅ (v,w) = (xv, xw).

5. If V is a representation of g then so is the dual V ∗ via

(x ⋅ f)(v) = −f(xv)

for each x ∈ g, v ∈ V, f ∈ V ∗.

Exercise. Check this is a Lie algebra homomorphism.
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6. If V,W are representations of g then so is Hom(V,W ) via

(x ⋅ f)(v) = x ⋅ f(v) − f(x ⋅ v).

Definition. If V,W are representations of g then a linear transformation ϕ ∶
V Ð→W is called g-equivariant if for all x ∈ g, v ∈ V , x ⋅ ϕ(v) = ϕ(x ⋅ v). V and
W are isomorphic if there is a g-equivariant isomorphism V Ð→W .

Definition. A subrepresentation V ′ ⊂ V is a subspace such that x ⋅ v ∈ V ′ for
all x ∈ g, v ∈ V ′.

Definition. V is irreducible if it has exactly two subrepresentations, namely 0
and V (note the 0 representation is not irreducible).

Examples. 1. The trivial representation is irreducible.

2. For sl2(C), the defining representation and adjoint representation are ir-
reducible.

Exercise. Prove this.

Definition. V is called completely reducible if it decomposes as the direct sum
of irreducible representations.

Note: For V a representation, complete reducibility is equivalent to the
condition that for every subrepresentation W ⊂ V there is a W ′ such that
V =W ⊕W ′.

Exercise. Prove this equivalence.

Finally, we have the following example

7. If V is a representation and W ⊂ V is a subrepresentation then V /W is a
representation of g via x(v +W ) = xv +W.

3.0.1 Warm Up for Lecture 3

Let

b = {[a b
0 c

] ∣ a, b, c ∈ C}

and let V = span{v1 = (1
0
) ,v2 = (0

1
)} be the definining representation of b.

Then V is not completely reducible. Suppose that it were. There is a sub-

representation V1 = ⟨v1⟩, since [a b
0 c

](1
0
) = (a

0
). So, as V is completely

reducible there is a subrepresentation V2 such that V ≅ V1⊕V2. Suppose
0 /= v = a1v1 + a2v2 ∈ V2.

[0 1
0 0

](a1

a2
) = (a2

0
)

so a2 = 0, but then v ∈ V1, a contradiction.
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Definition. A representation V of a Lie algebra g is faithful if the map g Ð→
gl(V ) is injective.

From now on in this course, all Lie algebras and representations are over C.
Let V be a representation of sl2(C), and let

e = [0 1
0 0

] , f = [0 0
1 0

] , h = [1 0
0 −1

] .

We know the following representations already:

dim name action of h
1 trivial 0

2 defining [1 0
0 −1

]

3 adjoint

⎡⎢⎢⎢⎢⎢⎣

2
0

−2

⎤⎥⎥⎥⎥⎥⎦

Definition. For λ ∈ C, the λ-weight space of V is

Vλ = {v ∈ V ∣ h ⋅ v = λv}.

Example. The following are vector space sums, not decompositions into irre-
ducible representations:

1. The trivial is V0.

2. The defining representation is V1⊕V−1

3. The adjoint representation V2 = ⟨e⟩, V0 = ⟨h⟩, V−2 = ⟨f⟩

The action of e: Suppose v ∈ Vλ. Then

h ⋅ ev = ([he] + eh) ⋅ v = 2e ⋅ v + λe ⋅ v = (λ + 2)e ⋅ v, so ev ∈ Vλ+2.

Exercise. f ⋅ v ∈ Vλ−2.

h ⋅ fv = ([hf] + fh) ⋅ v = (−2f + λf) ⋅ v = (λ − 2)f ⋅ v, so fv ∈ Vλ−2

So we have the following picture:

e

f

e

f

e

f

e

f

Vλ−4 Vλ−2 Vλ Vλ+2 Vλ+4

Definition. If a nonzero v ∈ Vλ ∩Ker(e) for some λ, then v is called a highest-
weight vector (of weight λ).
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Example. In the adjoint representation, e is a highest weight vector.

Lemma 4.1. Suppose v ∈ Vλ is a highest weight vector. Then for all n ≥ 1,

efnv = n(λ − n + 1)fn−1v.

Proof. By induction. Base case:

efv = ([ef] + fe)v = (h + fe)v = λv(+0) = 1(λ − 1 + 1)f0v

Exercise. Finish the proof.

For n > 1, we have

efnv = ef(fn−1v) = ([ef] + fe)fn−1v = hfn−1v + f(n − 1)(λ − (n − 1) + 1)fn−2v

Since fn−1v ∈ Vλ−2n+2 this is

(λ − 2(n − 1))fn−1v + (n − 1)(λ − n + 2)fn−1v = n(λ − n + 1)fn−1v

which completes the induction, which completes the proof.

Lemma 4.2. Suppose v ∈ Vλ is a highest weight vector. Then

W = span{v, fv, f2v, . . .}

is a subrepresentation of V .

Proof. It suffices to show that if w = fnv then:

(i) ew ∈W

(ii) hw ∈W

(iii) fw ∈W

(iii) is obvious from the definition of W . For (i), n ≥ 1 follows from lemma 4.1,
and n = 0 so ew = 0, since v is a highest weight vector. For (ii), fnv ∈ Vλ−2n so
hw = (λ − 2n)w ∈W .

Proposition 4.3. If V is finite dimensional then it contains a highest weight
vector.

Proof. Choose any nonzero eigenvector v for h, which we can do as we are
working over C, etc. Consider

v, ev, e2v,⋯

The set {env ∣ ev /= 0} is linearly independent, as the e-action changes the
eigenvalue of v, so as V is finite dimensional there is an n such that env /= 0,
but ekv = 0 for all k > n. Then env is a highest weight vector.
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Lemma 4.4. Suppose V is finite dimensional and v ∈ Vλ is a highest weight
vector. Then λ ∈ Z≥0.

Proof. Any nonzero vectors of the form fnv must be linearly independent, so
there is an n ≥ 0 such that fnv /= 0 but fkv = 0 for all k > n. Then by Lemma
4.1,

0 = efn+1v = (n + 1)(λ − n)fnv.
Since fnv is nonzero, n = λ.

Putting this all together, suppose V is of dimension n + 1 and irreducible.
Proposition 4.3 tells us that there is a highest weight vector v ∈ Vλ. Lemma 4.2
tells us that span{v, fv, f2v,⋯} is a subrepresentation, so {v, fv, f2v,⋯, fnv}
is a basis, as the f iv are all linearly independent. The proof of Lemma 4.4 tells
us that λ = n. So we have:

Corollary 4.5. If V is an irreducible representation of sl2(C) of dimension
n + 1 then there is a basis v0, v1,⋯vn of V such that:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n
n − 2

⋱
−n − 2

−n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

h ⋅ vi = (n − 2i)vi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1 0

⋱ ⋱
⋱ 0

1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f ⋅ vi = { vi+1 0 ≤ i ≤ n − 1
0 i = n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 n
0 2(n − 1)

⋱ ⋱
0 n

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e ⋅ vi = { i(n − i + 1)vi−1 i ≥ 1
0 i = 0

In particular, there is a unique irreducible representation of dimension n+1 for
all n ≥ 0.

Warm Up for Lecture 4: Let V be an (n + 1) dimensional irreducible
representation of sl2(C) and let v ∈ V be a highest weight vector. Then

(ef + fe + 1

2
h2) (v) = nv + n

2

2
v = (n

2

2
+ n) v.

Notation. Write V (n) for the irreducible representation of sl2 of dimension
n + 1.

Definition. Given a representation V of sl2, {λ ∈ C ∣ Vλ /= 0} are the weights of
V .

9



Today’s goal is:

Theorem 4.6. Every finite dimensional representation of sl2 is completely re-
ducible.

Note: This along with corollary 4.5 implies that the action of h completely
determines a finite dimensional representation.

Example. Suppose V is a 5-dimensional representation of sl2 and there is a
v ∈ V such that h ⋅ v = 3v. This implies that the weights contain 3,1,−1,−3, so
we must have

V ≅ V (0)⊕V (3)

We’ll need some general facts: if g is an arbritrary Lie algebra and ϕ ∶ gÐ→
gl(V ) is a representation of g, and there is some σ commuting with ϕ(x) for all
x ∈ g. Then:

Fact 1: Ker(σ − cIV ) is a subrepresentation of V for all c ∈ C

Proof. Exercise

Fact 2: If V is irreducible, then σ is a scalar.

Proof. There is a c ∈ C such that Ker(σ − cI) is nonzero so Ker(σ − cI) is a
nonzero subrep, so since V is irreducible, V = Ker(σ − cI).

Definition. Let V be a subrepresentation of sl2. Then

Ω = ef + fe + 1

2
h2 ∈ gl(V )

is called the Casimir element.

Lemma 4.7. If ϕ ∶ sl2 Ð→ gl(V ) is finite dimensional then Ω commutes with
ϕ(x) for all x ∈ sl2.

Proof. Check that eΩ = Ωe, fΩ = Ωf, hΩ = Ωh (see Grojnowski’s notes page 10).
.

Corollary 4.8. If V is an irreducible representation of sl2, then Ω ↻ V as a
scalar.

Proof. Schur .

(Warm up tells us Ω↻ Vn by n2

2
+ n)

Proof. (of Theorem 4.6) Let ϕ ∶ sl2 Ð→ gl(V ) be a finite dimensional represen-
tation of sl2(C) and suppose W ⊆ V is a suprepresentation. We need to show
there is a U ⊆ V so that V ≅W ⊕U .

Case 1: W has codimension 1, so V /W ≅ V (0).
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Case 1A: W is trivial so dimV = 2 and there is a basis of V with respect to

which sl2 acts on V by [0 ∗
0 0

]. We want to show V ≅ V (0)⊕ V (0).

Note that

[ [0 x
0 0

] , [0 y
0 0

] ] = 0 ∀x, y ∈ C

Since ϕ respects the bracket,

ϕ(h) = [ϕ(e), ϕ(f)] = 0,

ϕ(e) = 1

2
[ϕ(h), ϕ(e)] = 0,

and

ϕ(f) = 1

2
[ϕ(h), ϕ(f)] = 0.

Case 1B: W ≅ V (n) is irreducible, (n > 0).
Consider Ω ∈ gl(V ). We will show V ≅ V (n)⊕Ker Ω. By Schur, the
fact that W is irreducible, and the fact that Ω acts on V /W trivially,
there is a basis for V such that Ω acts by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c ∗
c ∗

c ∗
c ∗

c ∗
c ∗

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

W is nontrivial, so Ker(Ω) is nonzero, and it is clear that W ∩Ker(Ω)
is zero, so V =W ⊕Ker(Ω)

Case 1C: W arbritrary.

By induction on dimV . The base case is case 1A. Let W ′ ⊂W be a
nonzero subrepresentation. dim(W /W ′) < dimV and the codimen-
sion of W /W ′ in V /W ′ is 1 so by induction this implies

V /W ′ =W /W ′⊕W ′′/W ′ (⋆)

for some subspace W ′′ of V and W ′′/W ′ a subprepresentation of
V /W ′.

W ′ ⊂ W ′′ has codimenstion 1 and dimW ′ < dimV . Note that W ′′

is a subrepresentation of V , since W ′′/W being a representation im-
plies xw ∈ W ′ ⊂ W ′′ for all x ∈ sl2. So, by induction there is a
subrepresentation U ⊆W ′′ such that

W ′′ =W ′ ⊕U (⋆⋆)
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Now we claim V =W ⊕U . We know U has dimension 1, and W ∩U ⊆
W ∩W ′′ =W ′ since we showed the right hand side of (⋆) is a direct
sum. So by (⋆⋆), as the sum is direct, W ∩ U ⊂ W ′ ∩ U = 0. Since
U has dimension 1 and W codimension 1, we are done by the rank-
nullity theorem.

Case 2: Let W be arbritrary.

Consider Hom(V,W ), recalling that (x ⋅ ϕ)(v) = x ⋅ (ϕ(v)) − ϕ(x ⋅ v). Let

V = {ψ ∈ Hom(V,W ) ∶ ψ∣W = cIW some c ∈ C}

and the subspace
W = {ψ ∈ V ∶ ψ∣W = 0}.

Note:

- The codimension of W in V is 1.

- Suppose ψ∣W = cIW , x ∈ sl2,w ∈W . Then

(x ⋅ ψ)(w) = x ⋅ ψ(w) − ψ(x ⋅w) = x(cw) − c(xw) = 0.

So, V is a subrepresentation of Hom(V,W ) and soW is a subrepresentation
of V. By case 1 we may find a one-dimensional subrepresentation U of V
such that V =W ⊕ U . Write U = span(g) for g ∈ V, so g ∣W= cIW for some
nonzero c.

Now claim that as vector spaces, V =W ⊕Ker(g).
W ∩ Ker(g) = 0, so by rank-nullity, dimV = dimW + dim(Ker(g)) as
W = Im(g), so we do have a direct sum of vector spaces.

It remains to show Ker(g) is a subpresentation of V . Let v ∈ Ker(g),
x ∈ sl2. Since U is a one-dimensional representation of sl2, U is the trivial
representation and so 0 = (x ⋅ g)(v) = x ⋅ g(v) − g(x ⋅ v) so x ⋅ gv = g(x ⋅ v)
so 0 = g(x ⋅ v) and we are done.

Remark. The main ingredients of the proof were:

1. Existence of Ω.

2. Every one-dimensional representation of sl2 is the trivial representation.

4 Tensors

Let V,W be finite dimensional vector spaces, with {v1,⋯vk},{w1,⋯,wm} bases
for V,W respectively.

Recall V ⊗W has basis {vi ⊗wj ∣ 1 ≤ i ≤ k, 1 ≤ j ≤m} and
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1. c(v ⊗w) = cv ⊗w = v ⊗ cw for all v ∈ V,w ∈W,c ∈ C.

2. (u1 + u2)⊗w = u1 ⊗w + u2 ⊗w for all u1, u2 ∈ V,w ∈W .

3. v ⊗ (z1 + z2) = v ⊗ z1 + v ⊗ z2 for all v ∈ V, z1, z2 ∈W .

If V,W are representations of a Lie algebra g, then so is V ⊗W with

x ⋅ (v ⊗w) = (x ⋅ v)⊗w + v ⊗ (x ⋅w).

Example. If V,W are representations of sl2, and v ∈ Vλ,w ∈Wµ,

h ⋅ (v ⊗w) = (λ + µ)v ⊗w.

In particular, the weights of V ⊗W are {λ+µ ∶ λ weight for V, µ weight for W}.

Example. The decomposition of V (2)⊗ V (2)

2 0 −2
2 4 2 0
0 2 0 −2
−2 0 −2 −4

V (2)⊗ V (2) ≅ V (4)⊕ V (2)⊕ V (0).

Definition. The nth symmetric power is given by

Symn(V ) = V ⊗⋯⊗ V /Mn,

where

Mn = span{u1 ⊗⋯⊗ un − uσ(1) ⊗⋯⊗ uσ(n) ∣ σ ∈ Sn, ui ∈ V }.

Example. If n = 2, M2 = span{v ⊗ u − u⊗ v ∣ u, v ∈ V }.

Fact: Mn is a subrepresentation of V ⊗⋯⊗V whenever V is a representation
of g, and so Symn(V ) is a subrepresentation.

Example. In Sym2(V ), v ⊗ w = w ⊗ v so Sym2(V ) has basis {vi ⊗ vj ∣ i ≤ j}.
Decomposing Sym2(V (2)):

0 /= e⊗ e ∈ Sym2(V (2))

so V (4) is a subrepresentation, so

Sym2(V (2)) = V (4)⊕ V (0).

Definition. The nth exterior power ⋀n(V ) = V ⊗ V ⊗ ⋯V /Nn where Nn =
span{u1 ⊗⋯⊗ un ∣ ui ∈ V ∀i, ui = uj for some j}.

Example. For n = 2, N2 = span{v ⊗ v ∣ v ∈ V }, Nn is a subrepresentation of
V ⊗ V⋯⊗ V . The proof for n = 2 is:

Note (v+u)⊗(v+u) ∈ N2, v⊗v+v⊗u+u⊗v+u⊗u ∈ N2 so v⊗u+u⊗v ∈ N2.
So, if x ∈ g, x(v ⊗ v) = (xv)⊗ v + v ⊗ (xv) ∈ N2.

Notation. The coset of u1 ⊗⋯⊗ un is denoted u1 ∧ ⋯ ∧ un. A basis for ⋀2 V
is given by {ui ⊗ vj ∣ i < j}.

Example. Decomposing, ⋀2 V (2) ≅ V (2) with basis {e ∧ f, e ∧ h,h ∧ f}.
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5 Semisimple Lie Algebras

Throughout this section g is a semisimple Lie algebra over C.

Definition. A subspace I ⊂ g is an ideal of g is [xy] ∈ I for all x ∈ g, y ∈ I.

Note that:

1. Any ideal is a subalgebra.

2. If I is an ideal g/I is a Lie algebra under [x + I, y + I] = [xy] + I.

3. I is an ideal if and only if it is a subrepresentation of the adjoint repre-
sentation of g.

Examples. 1. The center of g is Z = {x ∈ g ∣ [xy] = 0 for all y ∈ g}, which is
an ideal.

2. The derived subalgebra [gg] is the span of {[xy] ∣ x, y ∈ g}, and is an ideal.

Exercise. The derived subalgebra of gln is sln. This is since trXtrY =
trY trX and the basis elements of sln generate one another under the
bracket.

3. If φ ∶ gÐ→ h is a homomorphism then Ker(φ) is an ideal, since φ respects
the bracket. In fact, every ideal arises in this way.

Definition. If [gg] is nonzero and the only ideals of g are 0 and g then g is
simple.

Examples. We’ll show sln for n ≥ 2, son for n ≥ 5 and sp2l for l ≥ 1 are all
simple. Note:

1. If g is simple then [gg] = g.

2. If g is simple then every representation of g is either faithful or a direct
sum of trivial representations.

So, g is simple if and only if the adjoint representation is irreducible.

Definition. The Lie algebra g is semisimple if it is the direct sum of simple
ideals, i.e. ideals which are themselves simple when viewed as Lie algebras.

Example. so2 ≅ sl2 ⊕ sl2.

Non-example. gln ≅ ⊕ sln.

Our aim will be to state a more standard definition of a semisimple Lie
algebra and then to show this definition is equivalent.

Definition. The central series g0 ⊃ g1 ⊃ g2⋯ is given by g0 = g,gn = [g,gn−1].
That is,

g ⊃ [gg] ⊃ [g[gg]] ⊃ ⋯.

14



Definition. The derived series g(0) ⊃ g(1) ⊃ g(2) ⊃ ⋯ is given by g(0) = g,g =
[g(n−1)g(n−1)] for each n ≥ 1. That is,

g ⊃ [gg] ⊃ [[gg][gg]] ⊃ ⋯.

Note that:

1. g(n) ⊂ gn.

2. For all n, g(n),gn are ideals.

Exercise. Prove this.

By induction on n. When n = 0 we’re done so let n > 0. Let x, y ∈ g,gn
respectively. Then [xy] ∈ gn−1 since gn−1 is an ideal, and gn ⊂ gn−1. But
gn is {[xy] ∶ x ∈ g, y ∈ gn−1} ⊃ {[xy ∶ x ∈ g, y ∈ gn]}.

Similarly, g(n) = {[xy] ∶ x, y ∈ g(n−1)} and so if y ∈ g(n), y = [wz],w, z ∈
g(n−1) so for x ∈ g, [xy] = [x[wz]] = −[w[xz]] − [z[xw]]. By induction,
[zx] and [xw] are in g(n−1) so [xy] ∈ g(n) by definition.

3. If g is simple, both series look like g ⊃ g ⊃ ⋯.

4. If g is abelian, both series look like g ⊃ 0 ⊃ 0 ⊃ ⋯.

Example. Let

η =
⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗ ∗ ∗
⋱ ∗ ∗

⋱ ∗
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
⊂ gln.

The central series for η is

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗ ∗ ∗
⋱ ∗ ∗

⋱ ∗
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
⊃
⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ∗ ∗
⋱ ⋱ ∗

⋱ 0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
⊃
⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ∗
⋱ ⋱ 0

⋱ 0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
⊃ ⋯.

Definition. If gn = 0 for some n then g is called nilpotent.

Definition. If g(n) = 0 for some n then g is called solvable.

Example. Let

B =
⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗
⋱ ∗ ∗

⋱ ∗
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
⊂ gln.

Exercise. B is solvable but not nilpotent.
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Abuse notation and write h for the image of h in gln under the irreducible
representation of sl2 of dimension n and analogously for e, both with respect
to the basis for which they take the standard form. Then since h ∈ B, and
[he] = 2e, by induction e ∈ Bn for all n and so B is not nilpotent.

To see that B is solvable, note that the diagonal of the bracket of any two
elements of B is identically zero. So, the derived series of B after the zeroth
term is contained in the central series of η and therefore becomes zero after n
steps.

Theorem. (Lie’s Theorem) If g is a solvable subalgebra of gl(V ) where V is
a finite dimensional C-vector space then there is a basis for V such that every
element is upper triangular.

Proof. See Humphreys, Section 4.

Proposition 6.1. Suppose I, J are ideals of g.

1. If g is solvable, then any subalgebra or quotient of g is solvable.

2. If I is solvable and g/I is also solvable then so is g.

3. If I, J are both solvable then so is I + J .

Proof. 1. Follows immediately from the definition.

2. Choose n such that (g/I)(n) = 0, so g(n) ⊂ I. Note g(n+m) ⊂ I(m) for each
m ≥ 0, and since I is solvable we’re done.

3. We have (I + J)/J ≅ I/I ∩ J . The right hand side is solvable by 1. J is
solvable by assumption and (I+J)/J is solvable. So by 2, I+J is solvable.

Proposition 6.1.3 allows us to define the radical of g.

Definition. The radical of g is the maximal solvable ideal of g, denoted by
Rad(g).

Definition. If ϕ ∶ g Ð→ gl(V ) is a finite dimensional representation of g the
trace form of V is

(⋅, ⋅)V ∶ g × gÐ→ C
(x, y)z→ tr(ϕ(x)ϕ(y)).

Exercise. 1. Trace forms are symmetric bilinear forms. It is clear that they
are biilinear forms, and symmetry follows since tr(XY ) = tr(Y X) and
trace is independent of basis.

2. ([xy]z)V = (x[yz])V .
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Definition. The Killing form K(⋅, ⋅) is (⋅, ⋅)ad, i.e. K(x, y) = tr(ad(x)ad(y)).

Theorem 6.2. The following are equivalent for a finite dimensional Lie algebra
g:

1. g is semisimple.

2. Rad(g) = 0.

3. The Killing form on g is non-degenerate.

Lemma 6.3. Let g be a Lie algebra.

1. If I is an ideal of g then so is [II].

2. Rad(g) = 0 if and only if g has no nontrivial abelian ideals.

Proof. For the first part, if x, y ∈ I, and z ∈ g just need to show that [z[xy]] ∈
[II]. By the Jacobi identity,

[z[xy]] = −[x[yz]] − [y[zx]].

For both of the summands on the right, both components of the bracket are in
I since I is an ideal, so the left hand side is in [II] as required.

For the second part, it is immediate that any abelian ideal is solvable. If I
is solvable, the last nonzero term in the derived series for I is abelian.

Warm Up for Lecture 7: Define g� = {x ∈ g ∣ K(x, y) = 0∀y ∈ g}.
Claim that g� is an ideal. Let x ∈ g�, y, z ∈ g. We are required to show that
K([xy], z) = 0. We know that K([xy], z) =K(x, [yz]) = 0 since s ∈ g� and we’re
done.

In order to prove Theorem 6.2, we need a few results to start us off. The
key ingredients are:

Lemma 6.4. Let I be an ideal of g and let KI be the Killing form of I. Then
KI(xy) =K(xy) for all x, y ∈ I.

Proof. By multiplying matrices. Choose a basis of I and extend to a basis of g.
Let x, y ∈ I With respect to this basis:

ad(x) = [A ∗
0 0

] where A = (adx) ∣I

and similarly for ad(y). KI(x, y) = tr(AB) = tr(adxad y) =K(x, y).

Cartan’s Criterion Suppose g is a subalgebra of gl(V ) for V a finite di-
mensional C-space. If (x, y) = 0 for all x ∈ g, y ∈ [gg], then g is solvable.

Proof. See Humphrey’s 4.3, uses Jordan decomposition.
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Corollary 6.5. 1. If g = g� then g is solvable.

2. If g is simple, then g� = 0.

3. g� is solvable for all finite dimensional g.

Proof. 1. Consider the adjoint ad ∶ g Ð→ gl(V ). The image ad(g) ≅ g/Z(g).
Z(g) is solvable since it is abelian. Since g = g�, Cartan’s criterion implies
that ad(g) is solvable. So by Proposition 6.1, g is solvable.

2. g� is an ideal so either g� = 0 in which case we’re done or g� = g, but then
g is solvable by (1), which contradicts the fact that g is simple, and has
derived subalgebra identically g.

3. (g�)� = g� by Lemma 6.4, so by (1) g� is solvable.

Proof. (of theorem) To see that (2) implies (3), g is a solvable ideal so g� ⊂
Rad(g) = 0

To see that (3) implies (2), let A be an abelian ideal of g. We claim that
A ⊂ g�. Let x ∈ A, y ∈ g. Choose a basis for A and extend to g

ad(x) = [0 ∗
0 0

] ad(y) = [∗ ∗
0 ∗]

so tr(ad(x)ad(y)) = 0 so A = 0.
To see that (2),(3) imply (1), note that if g is simple then we are done and

if not we can choose a minimal nontrivial ideal. Let

gI = {x ∈ g ∣K(x, y) = 0∀y ∈ I}

This is an ideal of g - the proof is the same as in the warm up.
Now, claim that g = I ⊕ gI .
To see this, since I is simple by minimality (and being nonabelian by (2)),

I ∩ gI ⊂ I� = 0. Now consider the map

g g∗ I∗

x K(x, ⋅) K ∣I∗(x, ⋅).

∼ res

The kernel is gI , which proves claim 1.
Repeat the argument with gI (choose a minimal ideal of gI). We can do this

because:

Exercise. Any ideal of gI is an ideal of g and so Rad(gI) = 0
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Claim 2: (gI)� = 0, since if x ∈ (gI)� then x ∈ g�.
To see that (1) implies (2), write g = ⊕Ii, Ii simple ideals. Let pi be the

projection onto Ii.

Exercise. If J is an ideal of g then pi(J) is an ideal of Ii.

If A ⊂ g is an abelian ideal of g then pi(A) is an abelian ideal of Ii so
pi(A) = 0 for all i, and therefore A = 0.

Theorem. (Weyl’s Theorem) Any finite dimensional representation of a semisim-
ple Lie algebra is completely reducible.

Proof. Almost the same as for sl2, the main ingredient being the second version
of the Casimir element.

Exercise. Any ideal or quotient of a semisimple Lie algebra is also semisimple.

Now, let ϕ ∶ g Ð→ gl(V ) be a finite dimensional irreducible representa-
tion. Without loss of generality assume ϕ is faithful, otherwise could work
with g/Ker(ϕ). By Cartan’s criterion, (⋅, ⋅)V is non-degenerate. Choose a basis
x1,⋯, xn of g. Since the trace form is non-degenerate pick dual basis y1,⋯, yn.
Let

Ωϕ =∑
i

ϕ(xi)ϕ(yi).

Then Ωϕ commutes with ϕ(x) for all x ∈ g (Humphrey’s 6.2). By Schur, Ωϕ is
a scalar. But tr(Ωϕ) = ∑i tr(ϕ(x)ϕ(y) = dim(g) so Ωϕ = 0.

Warm up for lecture 8: If g is a simple Lie algebra, ϕ ∶ g Ð→ gl(V ) is a
finite dimensional representation, then ϕ((g)) ⊂ sl(V ). This is because [g,g] ⊂ g
so

ϕ(g) = ϕ([gg]) = [ϕ(g), ϕ(g)] ⊂ [gl(V ),gl(V )] = sl(V ).

6 Jordan Decomposition

Recall from linear algebra that if x ∈ gl(V ) there is a basis of V such that x is
block diagonal with blocks of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ 1
⋱ ⋱

⋱ 1
λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Definition. x is nilpotent if xn = 0 for some n, and semisimple if if the roots
of its minimal polynomial are distinct (i.e. it is diagonalisable).

Proposition 7.1. If x ∈ gl(V ) then:

1. There are unique xs, xn in gl(V ) with xs semisimple, xn nilpotent, x =
xs + xn, and [xs, xn] = 0.
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2. There are polynomials ps, pn in C[T ] such that ps(0) = pn(0) = 0 and
ps(x) = xs, pn(x) = xn.

Definition. xs is the semisimple part of x, xn is the nilpotent part.

Suppose g is a finite dimensional Lie algebra, then we have the map

ad ∶ gÐ→ gl(g)

so ad(x) has a Jordan decomposition for all x ∈ g.

Lemma 7.2. Suppose g is a subalgebra of gl(V ), and x ∈ g. Then adx =
adxs + adxn is the Jordan decomposition of adx in g.

Proof. We know that adxs is semisimple, and adxn is nilpotent, and [adxs,adxn] =
ad([xs, xn]) = 0 so by uniqueness the Jordan decomposition must be adx =
adxs + adxn.

Theorem 7.3. Suppose g is semisimple, and a subalgebra of gl(V ), with x ∈ g.
Then xs, xn ∈ g.

Proof. Let
N(g) = {y ∈ g ∣ [yz] ∈ g ∀z ∈ g}.

Then we claim

1. N(g) is a subalgebra of gl(V ).

2. g is an ideal of N(g).

3. xs, xn ∈ N(g)..

The first two are clear from the definition of N(g). For the third, for z ∈ g, we
have

[xs, z] = adxs(z) = (adx)s(z),

and by proposition 7.1 (2), this is in g since (adx)s is a polynomial in adx with
no constant term.

Given a subrepresentation W ⊆ V let

gW = {y ∈ gl(V ) ∣ yw ∈W ∀w ∈W and tr(y ∣W ) = 0}.

Then gW is a subalgebra of gl(V ), by the warm up for lexture 8, g ⊆ gW and
xs, xn ∈ gW . Now, let

g′ = ⋂
W⊆V, g subreps

gW ∩N(g) ⊇ g.

We now claim g = g′. To see this, g′ is a representation of g via restriction to
the adjoint representation, and g is a subrepresentation of this representation.
By Weyl, g′ = g ⊕ U for some representation U , and it suffices to show U = 0.

20



We know that V =⊕i V
i for irreducible representations V i, and we’ll show that

U acts on each V i by zero. Suppose u ∈ U . Since g is an ideal of g′, if y ∈ g then

[y, u] ∈ g ∩U = 0.

So u commutes with everything in g, so by Schur u acts as a scalar on V i. u
also has trace 0 by the definition of gW , but u ∣V i has trace 0, so u = 0.

The upshot: Suppose g is a semisimple finite dimensional Lie algebra.
Then ad ∶ gÐ→ gl(g) is injective, so given x ∈ g,

adx = (adx)s + (adx)n (Jordan decomposition)

so (adx)s, (adx)n ∈ ad(g) so we can uniquely define the semisimple and nilpo-
tent parts of x to be xs, xn such that

ad(xs) = (adx)s, ad(xn) = (adx)n.

Proof. Suppose ϕ ∶ g Ð→ gl(V ) is a finite dimensional representation, x ∈ g.
Then

ϕ(x) = ϕ(xs) + ϕ(xn)
is the Jordan decomposition of ϕ(x) is gl(V ).

7 A Brief Introduction to Inner Automorphisms

Let V be a finite-dimensional vector space over C.

Definition. If x ∈ gl(V ),

exp(x) =
∞
∑
0

xi

i!
.

Note that exp(x) is invertible, since we can choose a basis such that x is
upper triangular.

Lemma 8.1. If g is a subalgebra of gl(V ) and x ∈ g is nilpotent then

exp(adx)(y) = exp(x)yexp(x)−1.

Corollary 8.2. If g ∈ gl(V ) and x is nilpotent then exp(ad(x)) is an automor-
phism of g.

Definition. Let Gad be the subgroup of the automorphism group of g generated
by {exp(ad(x)) ∣ x is nilpotent} Then Gad is the group of inner automorphisms
of g.

Examples. 1. g = sln(C), Gad = PGLn(C).

2. g = son(C), Gad = SOn(C)/Z.

3. g = sp2l(C), Gad = Sp2l(C)/Z.

21



Root Space Decomposition

Throughout, g is a finite semisimple Lie algebra over C.

Definition. A subalgebra t ⊆ g is toral if

1. t is abelian;

2. adx is semisimple for all x ∈ t.

A maximal toral subalgebra is called a Cartan subalgebra (CSA).

Warning : This is not the standard definition, but is equivalent.

Example. For sln, son, sp2l, with the bilinear form we chose earlier, the space
of diagonal matrices forms a Cartan subalgebra.

Lemma 9.1. Suppose V is a finite dimension C-space and σ1,⋯, σn are com-
muting semisimple endomorphisms of V . Given λ = (λ1,⋯, λn) ∈ Cn, define

Vλ = {v ∈ V ∣ σi(v) = λi(v) for all i}.

Then
V = ⊕

λ∈Cn
Vλ

Proof. The proof is by induction on n. For the n = 1 case, this follows since σ1

is semisimple, so diagonalisability is that V has a basis of σ1 eigenvectors.
For n > 1, we know by the inductive hypothesis that

V = ⊕
λ′∈Cn−1

Vλ′

for the action of σ1,⋯, σn−1. Since the σi commute, σn(Vλ′) = Vλ′ for all λ′ so
decomposing each Vλ′ for σn as in the n = 1 case, we are done.

Lemma 9.2. Any g contains a Cartan subalgebra.

Proof sketch: By Engel’s Theorem, we can choose x not nilpotent, and xs
generates a toral subalgebra. Then use Zorn’s Lemma.

Rewriting Lemma 9.1, suppose h ⊆ gl(V ) with a basis of commuting semisim-
ple σ1,⋯σn, λ ∈ Cn corresponds to the element of h∗ given by σi z→ λi. Then

Vλ = {v ∈ V ∣ h ⋅ v = λ(h) ⋅ v ∀h ∈ h}.

In our situation: fix t ⊆ g a Cartan subalgebra. Then

g = ⊕
λ∈t∗

gλ

where
gλ = {x ∈ g ∣ [tx] = λ(t)x for all t ∈ t}.
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Definition. Let Φ = {α ∈ t∗/0 ∣ gα /= 0}. The elements of Φ are the roots of g,
with respect to t. If α ∈ Φ, gα is a root space, and

g = g0 ⊕ ∑
α∈Φ

gα

is the root space decomposition or Cartan decomposition of g.

Proposition 9.3. 1. For all α,β ∈ t∗, [gαgβ] ⊂ gα+β .

2. If α ∈ Φ, then if x ∈ gα, adx is nilpotent.

3. If α + β /= 0, K(gα,gβ) = 0 for all α,β ∈ t∗.

Proof. 1. Let x ∈ gα, y ∈ gβ , and t ∈ t. We have

[t[xy]] = −[x[yt]] − [y[tx]] = [x[ty]] − α(t)[yx] = β(t)[xy] + α(t)[xy].

2. follows from (1) and the finite dimensionality of g.

3. If α + β /= 0 then there is a t ∈ t such that (α + β)(t) /= 0, so fix such a t,
and fix x ∈ gα, y ∈ gβ . Then

α(t)K(x, y) =K([tx], y) = −K([xt], y) = −K(x, [ty]) = −β(t)K(x, y)

so (α + β)(t)K(x, y) = 0, so K(x, y) = 0.

Corollary 9.4. 1. K ∣g0×g0 is non-degenerate.

2. If α ∈ Φ,−α ∈ Φ.

Proof. Since K is non-degenerate, given a non-zero x ∈ gα, there must be a
y ∈ g−α such that K(x, y) /= 0.

Proposition 9.5. g0 = t.

Proof. c.f. Humphreys 8.2.

Corollary 9.6. K ∣t×t is non-degenerate.
In particular, the map

tÐ→ t∗

xz→K(x, ⋅)

is an isomorphism. Let the inverse be λ ↦ tλ, so tλ is an element of t defined
by K(tλ, x) = λ(x) for all x ∈ t.
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Examples. 1. For sl2, can take t = ⟨[1
−1

]⟩. Define α ∈ t∗ by α(h) = 2,

gα = ⟨e⟩,g−α = ⟨f⟩.

2. Let g = sl3,

h1 =
⎡⎢⎢⎢⎢⎢⎣

1
−1

0

⎤⎥⎥⎥⎥⎥⎦
, h2 =

⎡⎢⎢⎢⎢⎢⎣

0
1

−1

⎤⎥⎥⎥⎥⎥⎦
and let t = ⟨{h1, h2}⟩. Define α ∈ t∗ by α(h1) = 2, α(h2) = −1. Then

gα =
⎡⎢⎢⎢⎢⎢⎣

1 ⎤⎥⎥⎥⎥⎥⎦
, g−α =

⎡⎢⎢⎢⎢⎢⎣
1

⎤⎥⎥⎥⎥⎥⎦
.

Theorem 9.7. If α ∈ Φ, then

mα ∶= gα ⊕ [gα,g−α]⊕ g−α

is a subalgebra of g isomorphic to sl2. In particular,

dim(gα) = dim([gα,g−α]) = dim(g−α) = 1.

Stepping back, this means that every semisimple Lie algebra is built out of
sl2s. To prove this, we’ll need some preparation.

Warm Up for Lecture 10: If t ∈ t satisfies α(t) = 0 for all α ∈ Φ, then
t = 0. To see this, if α ∈ Φ and x ∈ gα then 0 = α(t)x = [tx], and since a toral
subalgebra is abelian, this holds in all of g, so t ∈ Z(g) = {0}.

Proposition 9.8. Φ spans t∗.

Proof. If not then there is a nonzero t satisfying α(t) = 0 for all α ∈ Φ, which is
false by the warm up.

Proof. (of Theorem 9.7)

Claim 1 : [gα,g−α] is one dimensional.

Proof of Claim 1 : Suppose x ∈ gα, y ∈ g−α so [xy] ∈ t. Let t ∈ t, so

K([xy], t) =K(x, [yt]) = −K(x, [ty]) = α(t)K(x, y).

So, [xy] = K(x, y)tα ∈ ⟨tα⟩, so [gα,g−α] is at most one-dimensional, but
there are x, y such that K(x, y) /= 0 by non-degeneracy so it is exactly
one-dimensional. ◻
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Claim 2 : α(tα) /= 0.

Proof of Claim 2 : Since the Killing form is non-degenerate and rescaling
is possible, we may choose x ∈ gα, y ∈ g−α such that K(x, y) = 1. Then

[x, y] = tα [tα, x] = α(tα)x [tα, y] = −α(tα)y

and therefore ⟨{x, y, tα}⟩ is a subalgebra, h, say, of g.

Suppose that α(tα) = 0. Since [h,h] = ⟨tα⟩, this implies that h is solvable.

Consider ad ∶ g Ð→ gl(g). We know that h embeds to a solvable sub-
algebra, so by Lie’s Theorem there is a basis of gl(g) with respect to
which ad(h) is contained in the set of upper triangular matrices, and
ad(tα) = [adx, ady] is a strictly upper triangular matrix. So ad(tα) is
nilpotent, but by semisimplicity it is semisimple and therefore ad(tα) = 0
so tα ∈ Z(g) = 0, a contradiction. ◻ .

Notation: Given α ∈ Φ, write hα = 2tα
α(tα) ∈ t. Choose eα ∈ gα, e−α ∈ g−α such

that [eα, e−α] = hα. Then note that

[hα, eα] = α(hα)eα = 2eα, [hα, e−α] = −2e−α

and therefore sα ∶= ⟨{eα, hα, e−α}⟩ ≅ sl2 with (eα, hα, e−α) an sl2 triple.
For the rest of the proof, let

V = t⊕∑
c∈C

gcα.

Then, via restriction of the adjoint map V is a representation of sα, and we may
note that:

1. t = ⟨hα⟩⊕Ker(α).

2. Ker(α) is an sα subrepresentation of V .

3. sα is an sα subrepresentation of V .

By Weyl’s theorem, as a representation of sα,

V = Ker(α)⊕ sα ⊕W (for some complement W ).

Claim 3 : W = 0.

Proof of Claim 3 : It suffices to show that any irreducible representation
of W is zero. Let W0 be a nonzero irreducible representation. Then W0

has a highest weight vector, w0, and we know:

• w0 ∈ gcα for some c /= 0.

• [hα,w0] = nw0 some n ∈ Z≥0

• [hα,w0] = cα(hα)w0 = 2cw0.
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so n = 2c.

Case 1: n is even, so hα acts on W0 by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n
n − 2

⋱
n − 2

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

so 0 is a weight, which is a contradiction since W0 ⊆ ∑c∈C gcα
Case 2: n is odd so hα acts by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n
n − 2

⋱
n − 2

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and 1 is a weight. If [hα, v] = v then v ∈ gα
2

so β ∶= α
2
∈ Φ . Consider

the sβ action on V = t ⊕ ∑c∈C cα. As an sβ representation, V =
Ker(β)⊕sβ⊕W ′, with W ′ an sβ subrep. Note that gα ⊆W ′. If ∈ gα,

[hβ , x] = α(hβ)x = 2β(hβ)x = 4x

so hβ acts on gα with an even weight. So zero is a hβ-weight of W ′,
which is a contradiction, since hβ acts by non-zero scalars.

◻ (Claim 3, Theorem 9.7)

Putting this together, we have that dim(gα) = dim(g−α) = 1.

Corollary 9.9. : If α, cα ∈ Φ for some constant c then c = ±1.

Theorem 9.10. Suppose α,β ∈ Φ

1. β(hα) ∈ Z.

2. The space ⊕k∈Z gβ+kα is an irreducible representation of mα.

In particular, the set {β + kα ∶ k ∈ Z} ∩ Φ is of the form β − pα,β − (p −
1)α,⋯, ββ + α,⋯, β + qα for some p, q ∈ Z. This is called the α-string
through β.

3. For p, q as in (2), p − q = β(hα).

4. [gαgβ] = gα+β .

Proof. 1. Let V = ⊕k∈Z gβ+kα, and let mα act on V by restriction of the
adjoint representation. Let

q = max{k ∣ β + kα ∈ Φ},
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and let v ∈ gβ+kα be nonzero. Then

[eα, v] ∈ gβ+(q+1)α = 0, [hα, v] ∈ ⟨v⟩,

and so v is a highest weight vector of weight (β + qα)(hα). So by the
representation theory of sl2,

β(hα) + qα(hα) ∈ Z≥0

so β(hα) + 2q ∈ Z≥0 so β(hα) ∈ Z.

2. W ∶= {v, e−αv, e2
−αv, . . .} is an irreducible subrepresentation of V , and hα

acts on W by

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(β + qα)(hα)
(β + (q − 1)α)(hα)

⋱
−(β + qα)(hα)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

In particular,

W =
q

∑
k=−p

gβ+kα

for some p ∈ Z≥0. Suppose W ′ ⊆ V is a subrepresentation not equal to W .
Then W ′ contains a highest weight vector w ∈ gγ for some γ. Then

γ(hα) < −(β + qα)(hα) ≤ 0,

which contradicts (1).

3. −(β + qα)(hα) = (β − pα)(hα).

4. [gα,gβ] ⊆ gα+β so if gα+β = 0 we are done. If α+β ∈ Φ, take any nonzero v ∈
gβ . Then if [eα, v] = 0, v is a highest weight vector for V , a contradiction.
So [eα, v] is nonzero and therefore spans gα+β .

Corollary 9.11. For α ∈ Φ, define wα ∶ t∗ Ð→ t∗ by wα(λ) = λ−λ(hα)α. Then
wα(Φ) = Φ.

Proof. Let β ∈ Φ. Let p, q be as in Theorem 9.10. We need to show β−β(hα)α ∈
Φ, and have

β − β(hα)α = β − (p − q)α

Since −p ≤ −(p − q) ≤ q, this is in the root string.
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wα

−α α
2

α

Hα
λ(hα) = −2 λ(hα) = 1 λ(hα) = 2

Stepping back, wα is reflection over the hyperplane Hα ∶= {λ ∈ t∗ ∣ λ(hα) = 0},
and this reflection preserves Φ. Our goal now will be to define a root system as
something having all the nice properties of Φ and then show that root systems
correspond to semisimple Lie algebras.

Root Systems

Roots in Euclidean Space

Proposition 10.1. Define a bilinear form on t∗ by (λ,µ) = K(tλ, tµ) for each
λ,µ ∈ t∗.

1. If α,β ∈ Φ, (α,β) ∈ Q.

2. If α1,⋯, αl ∈ Φ form a basis of t∗ then Φ is contained in spanQ{α1,⋯, αl}.

3. This bilinear form s posititve definite on QΦ = spanQ{α ∣ α ∈ Φ}.

Proof. c.f. Grojnowski Proposition 5.7. Note for (1): β(hα) = 2(α,β)
(α,α) .

Let E = spanR(Φ). Then E is a Euclidean vector space.

Abstract Root Systems

Let (E, (⋅, ⋅)) be a Euclidean space. Given α ∈ E, define α̌ ∶ E Ð→ R by

α̌(λ) = 2(α,λ)
(α,α)

.

Definition. A finite subset Φ ⊂ E is a root system if

1. 0 /∈ Φ, and Φ spans E.

2. If α,β ∈ Φ then β̌(α) ∈ Z.
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3. Define wα ∶ E Ð→ E by

wα(λ) = λ − α̌(λ)α

Then if α ∈ Φ, wα(Φ) = Φ.

4. If α, cα ∈ Φ for c a constant, then c = ±1.

Removing (4) gives a ”non-reduced” root system, but we will not discuss
these.

Notation. If µ ∈ E,λ ∈ E∗ then ⟨µ,λ⟩ = λ(µ), so for example ⟨α, β̌⟩ = β̌(α).

Example. If g is a semisimple Lie algebra, t ⊆ g a Cartan subalgebra Φ the set
of roots associated to t then Φ forms a root system in RΦ.

Definition. The rank of a root system is dim(E).

Definition. If (Φ,E), (Φ,E′) are root systems then an isomorphism is a linear
isomorphism of vector spaces ρ ∶ E Ð→ E′ with ρ(Φ) = Φ′ and ⟨ρ(α), ˇρ(β)⟩ =
⟨, α, β̌⟩ for all α,β ∈ Φ.

Definition. If α ∈ Φ then α̌ is called a coroot.

Examples. Rank 1

A1: Φ = {α,−α}, ⟨α, α̌⟩ = −2.

wα

−α α

Rank 2

A1 ×A1: Φ = {α,−α,β,−β}, ⟨α, α̌⟩ = ⟨β, β̌⟩ = −2, ⟨α, β̌⟩ = 0.

wα

wβ

−α α

−β

β
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A2: Φ = {α,−α,β,−β,α + β,−α − β}, (α,α) = (β,β) = 1, (α,β) = − 1
2
, so ⟨α, β̌⟩ =

⟨β, α̌⟩ = −1.

wα

wα+β

wβ

−α α

−β−α − β

β α + β

B2: Φ = {α,−α,β,−β,α + β,2α + β,−α − β,−2α − β}. ⟨α, β̌⟩ = −1. ⟨β, α̌⟩ = −2.

wα

wα+β

wβ

−α α

β

−β
−2α − β

2α + β

−α − β

α + β

G2: ⟨α, β̌⟩ = −1, ⟨β, α̌⟩ = −3, (β,β) = 3, (α,α) = 1.
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wα

wβ

−α α

−α − β−2α − β

2α + β α + β
β 3α + β

3α + 2β

−β−3α − β

−3α − 2β

Returning to Lie algebras,

1. sl2 = ⟨h⟩⊕gα⊕g−α with α(h) = 2. Taking h as the generator of the Cartan
subalgebra, have root system corresponding to A1.

2. sl3, with

t = ⟨
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
−1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣
1

−1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⟩

has Φ = {±α,±β,±(α+β)} where α(h1) = 2, α(h2) = −1, β(h1) = −1, β(h2) =
2, then Φ ≅ A2.

3. For sp4 or so5, Φ ≅ B2.

4. G2 corresponds to a Lie algebra that we are yet to define.

Definition. The Weyl group of a root system (Φ,E) is the subgroup of GL(E)
generated by {wα ∣ α ∈ Φ}.

Examples. 1. For A1, W ≅ C2.

2. For B2, W ≅D8.

3. For A2, W ≅D6.

4. For G2,, W ≅D12.
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Lemma 11.1. The Weyl group of Φ is isomorphic to a subgroup of Sn where
n = ∣Φ∣.

Proof. W acts on Φ, and Φ spans E.

Note that if (Φ1,E1), (Φ2,E2) are root systems then (Φ1 ∪ Φ2,E1 ⊕ E2) is
also a root system.

Definition. A root system of this form with both Φi nonempty is called re-
ducible, and otherwise Φ is irreducible.

Examples

1. A1 ×A1 is reducible.

2. A1,A2,B2,G2 are all irreducible.

3. If Φ corresponds to a Cartan subalgebra in a semisimple Lie algebra g
then Φ is irreducible exactly when g is.

Proof. (Exercise) Let g = g1 ⊕ g2 be reducible, and let t1, t2 be Cartan
subalgebras of components. Then t1 ⊕ t2 is a Cartan subalgebra of g. Let
Φ1,Φ2 be the roots of g1,g2 with respect to t1, t2. For α ∈ Φi, extend α to
t1 ⊕ t2 via ᾱ(t1 + t2) = α(ti). Then ᾱ is a root of g with gᾱ = giα ⊕ 0 so

g = (t1 ⊕ t2)⊕ ⊕
α∈Φ1∪Φ2

gᾱ

so the root system of g is (Φ1 ∪Φ2,g = g1 ⊕ g2) which is reducible.

Now let Φ = Φ1 ∪Φ2 be reducible corresponding to g = E1 ⊕E2. Since E1,
E2 are vector spaces it suffices to check that they are closed under the
bracket as subspaces of g, and that [e1, e2] = 0 for any ei ∈ Ei. Any e2 is
in the span of the root spaces corresponding to Φ2.

Lemma 11.2. If Φ is a root system and α,β ∈ Φ, α /= ±β then

⟨α, β̌⟩⟨β, α̌⟩ ∈ {0,1,2,3}.

Proof. Recall (α,β) =
√

(α,α)
√

(β,β) cos θ where θ is the angle between α and
β. So

⟨α, β̌⟩⟨β, α̌⟩ = 4(α,β)2

(α,α)(β,β)
= 4 cos2 θ ∈ Z.

Now, cos2 θ ∈ [0,1] so cos2 θ ∈ {0, 1
4
, 1

3
, 3

4
,1}, but since α /= ±β, cos2 θ /= 1.

Corollary 11.3. If Φ is a root system and α,β are roots then ⟨α, β̌⟩ ∈ {0,±1,±2,±3}.

Proof. Immediate from the above.

Exercise. The only rank two systems are, up to isomorphism, those listed
above.
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Proof. It is clear that A1 is the only rank 1 root system. Since any reducible
root system of rank two must be a direct sum of two rank 1 systems, A1 ×A1 is
the only reducible rank two system.

For the irreducible rank 2 systems, we must have two basis elements α,β,
and we may choose α to minimise (α,α), and β to minimise ⟨β, α̌⟩ subject to
β /= −α. Since α is of minimal length, ⟨α, β̌⟩ ≤ ⟨β, α̌⟩ and since α,β are linearly
independent these two brackets have product in {0,1,2,3} by Lemma 11.2. Also,
β ∈ Φ so −β ∈ Φ, we have ⟨α, β̌⟩ ≤ 0, and so ⟨β, α̌⟩ ≤ 0. The possibilities are then:

⟨α, β̌⟩ ⟨β, α̌⟩ Root System
0 0 A1 ×A1

−1 −1 A2

−1 −2 B2

−1 −3 G2

And the root systems are determined up to isomorphism by the pairing
of α and β, since these determine the position of β relative to α, which then
determines wβ , and the action of wα, wβ on ±α,±β generates all of each of the
root systems listed. Moreover, subject to the assumptions on α,β, no other
roots can be added.

Corollary 11.4. If Φ is an irreducible root system then (α,α) can take at most
two values as α varies over Φ.

Proof. (Sketch) If we can have three values, then there are α,β ∈ Φ with

(α,α)
(β,β)

= 2

3

so
⟨α, β̌⟩
⟨β, α̌⟩

= 2

3

so
6 ∣ ⟨α, β̌⟩⟨β, α̌⟩

which is a contradiction. Care is required to justify why the product can be
taken to be nonzero.

Definition. An irreducible Φ is called simply laced if (α,α) takes exactly one
value as α varies over Φ.

Exercise. Φ is simply laced if and only if ⟨α, β̌⟩ ∈ {0,±1} for all α,β with
α /= ±β.

Proof. See Example Sheet.
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Weyl Chambers, Root Bases

Throughout, (Φ,E) is a root system, and for α ∈ Φ, Hα = {λ ∈ E ∣ ⟨λ, α̌ = 0} is
the corresponding root hyperplane.

Definition. The connected components of E −⋃α∈ΦHα are called Weyl cham-
bers.

Definition. A subset ∆ = {α1,⋯, αl} ⊆ Φ is called a root basis if:

1. ∆ forms a basis for E;

2. α = ∑li=1 ciαi ∈ Φ so ci ∈ Z≥0∀i or ci ∈ Z≤0∀i.

Example. In our rank 2 systems, {α,β} form a root basis.

Definition. If ∆ = {α1,⋯, αl} is a root basis, the αi are called simple roots. If
α = ∑li=1 ciαi with ci ≥ 0, α is a positive root, and if ci ≤ 0 α is a negative root.
Φ+ is the set of all positive roots, Φ− the set of all negative roots.

Warm Up for Lecture 13: Let W be the Weyl group of (Φ,E). Then if
∆ is a root basis, w ∈W , then w(∆) is a root basis.

Proof. We know w ∈ GL(E) so w(∆) is a basis for E and a subset of Φ. If
α ∈ Φ, α = ∑ ciαi for ci ≥ 0 for all i or ci ≤ 0 for all i, so w(α) = ∑ ciw(αi) with
ci ≥ 0 for all i or ci ≤ 0 for all i.

The warm up tells us that W acts on the set of root bases. The goal for now
will be to construct a root basis. Our set up will be as follows.

Choose γ ∈ E −⋃α∈ΦHα and define

Φ+
γ = {α ∈ Φ ∣ ⟨γ, α̌⟩ > 0} = {α ∈ Φ ∣ (γ,α) > 0)}.

Set Φ−
γ = −Φ+

γ(= {α ∈ Φ ∣ ⟨γ, α̌⟩}. Define also

∆γ = {α ∈ Φ+
γ ∣ α /= β1 + β2 for any β1, β2 ∈ Φ+

γ}.

Note that these sets only depend on the Weyl chamber of γ.

Theorem 12.1. 1. ∆γ is a root basis.

2. Every root basis is of the form ∆γ for some γ ∈ E −⋃α∈ΦHα.

Proof of (1): We split into the following claims.

Claim 1 : If α,β ∈ ∆γ , α − β /∈ ∆γ .

Suppose α,β ∈ Φ. Without loss of generality α − β ∈ Φ+
γ , else take β − α.

Then α = (α − β) + β, contradicting the definition of ∆γ .
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Claim 2 : If α,β ∈ ∆γ and α /= β then ⟨α, β̌⟩ = 0.

Recall ⟨α, β̌⟩⟨β, α̌⟩ ∈ {0,1,2,3}. Suppose ⟨α, β̌⟩ > 0. Without loss of gen-
erality it is 1, else consider ⟨β, α̌⟩. wβ(α) = α − ⟨α, β̌⟩β = α − β ∈ Φ since
W preserves Φ, which contradicts claim 1.

Claim 3 : Let ∆γ = {α1,⋯, αl}. If α ∈ Φ+
γ , α = ∑li=1 ciαi then ci ∈ Z≥0.

Suppose there is some α that cannot be written this way. Pick such an α
with (γ,α) minimal. α /∈ ∆γ so α = β1 + β2 for β1, β2 ∈ Φ+

γ . Now,

(α, γ) = (β1 + γ) + (β2, γ),

so
(βi, γ) < (α, γ),

so β1, β2 can be written as a Z≥0-linear combination of the αi, so as the
sum of β1, β2, so too can α, a contradiction.

Note that this implies that every element in Φ−
γ is a Z≤0 combination of

αi and that ∆γ spans E, since Φ does.

Claim 4 : ∆γ forms a linearly independent set.

Suppose that for some ci ∈ R, ∑li=1 ciαi = 0. Without loss of generality
ci ≥ 0 for 1 ≤ i ≤m and ci ≤ 0 for m + 1 ≤ i ≤ l, so

v ∶=
m

∑
i=1

ciαi = −
l

∑
j=m+1

cjαj ,

so
0 ≤ (v, v) = −∑

i,j

cicj(αi, αj) ≤ 0,

since cicj ≤ 0 and by claim 2, (αi, αj) ≤ 0, so v = 0. So

0 = (γ, v) =
m

∑
i=1

ci(γ,αi),

so ci = 0 for 1 ≤ i ≤m and similarly for m + 1 ≤ j ≤ l.
For (2), see Humphreys

Corollary 12.2. There is a bijection

{Weyl chambers}↔ {root bases}.

Proof. Given a Weyl chamber C, choose γ ∈ C and choose root basis ∆γ . Given
∆ = ∆γ , γ ∈ C for some Weyl chamber C.

Definition. Given a root basis ∆γ , the fundamental Weyl chamber is the Weyl
chamber containing γ.
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Definition. If ∆ = {α1,⋯, αl} is a root basis and α ∈ Φ then the height of α is

∑ ci where α = ∑li=1 ciαi.

Proposition 12.3. If ∆ = {α1,⋯, αl} is a root basis and β ∈ Φ+/∆, there is an
i such that β − αi ∈ Φ.

Proof. Given β, if (β,αi) ≤ 0 for all i then ∆∪{β} is an linearly independent set
by the proof of claim 4 so there is an i such that ⟨β, α̌i⟩ > 0. Since ⟨β, α̌i⟩⟨αi, β̌⟩ ∈
{0,1,2,3} then ⟨β, α̌i⟩ = 1 or ⟨αi, β̌⟩ = 1.

So, wαi(β) = β − αi ∈ Φ or wβ(αi) = αi − β ∈ Φ so β − αi ∈ Φ.

Corollary 12.4. If β ∈ Φ+, then β can be written as β = αi1 +⋯+αin with αij
a simple root for each j, and ∑kj=1 αij a root for all k.

Proof. By induction on height, using Proposition 12.3.

Note: Corollary 12.4 implies that for g a semisimple Lie algebra with Car-
tan subalgebra t, root system Φ, then given a root basis Φ, g is generated by
{eα, e−α ∣ α ∈ Φ}.

From the warm up, we know that W acts on the set of root bases, and
therefore preserves the set of Weyl chambers.

Proposition 12.5. If ∆ is a root basis and w ∈W Cw(∆) = w(C∆).

Proof. Uses

Lemma 12.6. If w ∈W and λ,µ ∈ E then ⟨λ, µ̌⟩ = ⟨w(λ), ˇw(µ)⟩.

Warm Up for Lecture 14: For Φ a root system, ∆ a root basis and W
Weyl group, α ∈ ∆, wα permutes Φ+ −∆.

Proof. Suppose α = α1 and ∆ = {α1,⋯, αl}. Suppose β ∈ Φ+ − {α}. Then
β = ∑ ciαi with ci non-negative integers.

wα1(β) = β − ⟨β, α̌1⟩α1 = (c1 − ⟨β, α̌1⟩)α1 +
l

∑
i=2

ciαi.

Since β is a positive root, and β /= α1 so wα1(β) /= −α1, ci > 0 for some i > 1
and so wα1(β) is a positive root different from α, since β /= −α, which is what
we wanted to show.

Theorem 12.7. 1. The Weyl group acts simply transitively on the set of
root bases (and the set of Weyl chambers).

2. Given a root basis ∆ and α ∈ Φ there is a w ∈W with w(α) ∈ ∆. This is
not necessarily unique.

3. If ∆ = {α1,⋯, αl} is a root basis then W is generated by {wαi ∣ 1 ≤ i ≤ l}.

Proof. See Humphrey’s 10.3.
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8 Classification of Irreducible Root Systems

Throughout, (Φ,E) is a root system, ∆ = {α1,⋯, αl} is a root basis and W is
the Weyl group of Φ.

Definition. The Cartan matrix of Φ is the l×l matrix (ai,j) with ai,j = ⟨αi, α̌j⟩.

Note that this is independent of choice of root basis since given ∆′ there is
a w ∈W with w(∆) = ∆′ preserving angle brackets.

Example. For G2,

α

β

α1 = α,α2 = β we have ⟨α1, α̌2⟩ = −1, ⟨α2, α̌1⟩ = −3 and so we have Cartan

matrix [ 2 −1
−3 2

] with uniqueness up to reordering the base.

Proposition 12.8. Suppose (Φ′,E′) is a root basis {α′1,⋯, α′l} such that

⟨αi, α̌j⟩ = ⟨α′i, α̌′j⟩ for all i, j.

Then the linear map defined by αi Ð→ α′i induces an isomorphism of root sys-
tems.

Proof. αi Ð→ α′i induces an isomorphism of vector spaces ψ ∶ E Ð→ E′. We
need to show:

1. ψ(Φ) = Φ.

2. ⟨ψ(αi), ˇψ(β)⟩ = ⟨α, β̌⟩ for all α,β ∈ Φ.

Consider the action of W .

ψ(wαi(αj)) = ψ(αj − ⟨αj , α̌i⟩αi)
= α′j − ⟨αj , α̌i⟩α′i
= wα′i(α

′
j)

= wα′i(ψ(αj)).

So, the Weyl group of Φ,Φ′ are isomorphic since both are generated by simple
reflections, and ψ(w(α)) = w(ψ(α)) for each α ∈ Φ under this identification.
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1. Given α ∈ Φ there is w ∈W with w(α) ∈ ∆. ψ(w(α)) ∈ ∆′ so w(ψ(α)) ∈ ∆′

so ψ(α) ∈ Φ′. For the other containment do the same with ψ−1.

2. Given α,β ∈ Φ choose w ∈W with w(β) ∈ ∆. Write w(α) = ∑ ciα′i. Then

⟨α, β̌⟩ =⟨w(α), ˇw(β)⟩
=∑ ci⟨αi, β̌⟩

=∑ ci⟨ψ(αi), ˇψ(w(β))⟩

=⟨w(ψ(α)), ˇw(ψ(β))⟩.

Definition. The Dynkin diagram of Φ has:

1. vertices ↔∆

2. The ith and jth vertices connected by ⟨αi, α̌j⟩⟨αj , α̌i⟩ edges.

3. If a multiple edge occurs, an arrow points to the shorter root.

Examples. For ranks 1 and 2 we have the following.

Type A1:

Type A1 ×A1:

Type A2:

Type B2:

Type G2:

Note that the maximal number of edges between any pair of vertices is 3,
and Φ is simply laced if and only if the Dynkin diagram has no multiple edges.

Exercise. Φ is irreducible if and only if the Dynkin diagram is simply con-
nected.

Theorem 12.9. If Φ is irreducible, then its Dynkin diagram is one of either a
diagram associated to the classical root systems:

Al:

Bl:

Cl:

Dl:

or it is one of the exceptional root systems:
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E6:

E7:

E8:

F4:

G2:

Proof. See Humphreys 11.4.

Theorem 12.10. For every Dynkin diagram D listed, there is a simple Lie
algebra g with Cartan subalgebra t, roots Φ corresponding to t such that the
Dynkin diagram of Φ is given by D.

Proof. (Sketch) For Al, let ei be the ith standard basis vector for Rl+1. Let
Φ = {ei − ej ∣ i /= j} ⊆ Rl+1. Φ spans an r-dimensional subspace of Rl+1, call it
E. Then Φ is a root system in E with root basis given by {ei − ei+1 ∣ 1 ≤ i ≤ l}
and

⟨αi, α̌j⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1 i, j differ by 1
2 i = j
0 otherwise.

The corresponding Dynkin diagram is

α1 α2 αl

so Φ is type Al. Now, wαi flips the ith and (i + 1)th co-ordinate, so W ≅ Sl+1.

The corresponding Lie algebra is sll+1 with Cartan subalgebra

⎡⎢⎢⎢⎢⎢⎣

∗
⋱

∗

⎤⎥⎥⎥⎥⎥⎦
and

αi
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

t1
⋱

tl+1

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
= ti − ti+1.

For the classical root systems, for ei basis of Rl and t diagonal subalgebra
we get

Type Φ ⊆ Rl ∆ ∈ Φ W g

Bl {±ei,±ei ± ej , i /= j} {ei − ei+1 ∣ 1 ≤ i ≤ l} ∪ {el} Sl ⋉Cl2 so2l+1

Cl {±2ei,±ei ± ej , i /= j} {ei − ei+1 ∣ 1 ≤ i ≤ l} ∪ {2el} Sl ⋉Cl2 sp2l

Dl {±ei ± ej , i /= j} {ei − ei+1 ∣ 1 ≤ i ≤ l} ∪ {el−1 + el} Sl ⋉Cl−1
2 so2l
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Weyl group for Bl: Sl acts on co-ordinates, and each C2 acts as a sign change
on each co-ordinate.

• G2 - know root system.

• F4 ⊆ R4, Φ = {±ei,±ei ± ej ,
1
2
(e1 + e2 + e3 + e4)i /= j}.

• E6,E7,E8, see Grojowski’s notes section 6.

E8 ⊆ R8, ∣ Φ ∣= 240.
Let

wc =
8

∏
i=1

wαi

called a coxeter element of W . The order of wc is 30 and there is a plane of
R8 on which it acts by rotation. The picture below shows projection of roots to
that plane. The circles are the orbits under the group generated by wc.

In general, to look up root systems, use the spherical explorer.
For computations, it is best to know things in terms of simple roots.
The exceptional Lie algebras are written as g2, f4, e6, e7, e8. g2 is the algebra

of derivations of the octonians O, where a derivation is a linear map δ, δ(ab) =
δ(a)b + aδ(b). O is 8-dimensional. It has a one-dimensional center on which
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g2 acts trivially. We can get a representation g2 ↪ so7, the lowest dimensional
nontrivial representation (see Humphrey’s 19.3). Others can be constructed, see
Fulton Harris 22.4.

Note that given a root system Φ there is a natural construction of a Lie
algebra with that root system.

To summarise, so far we have

{g simple, t CSA}↠ {irreducible root systems Φ}↔ {connected Dynkin diagrams}.

Next,

1. We’ll show the root system corresponding to g is independent of choice of
Cartan subalgebra.

2. We’ll show two Lie algebras with the same root system are isomorphic.

Isomorphism and Conjugacy

Throughout, g is a semisimple Lie algebra, t a Cartan subalgebra of g, Φ root
system corresponding to t and ∆ ⊆ Φ a root basis.

Proposition 13.1. If t′ is another Cartan subalgebra of g then there is an inner
automorphism ψ ∈ Gad with ψ(t) = t′.

Proof. see Humphreys 16.4

Definition. The rank of g is the dimension of a Cartan subalgebra, which is
independent of choice of Cartan subalgebra by Proposition 14.1.

Corollary 13.2. If t′ is a Cartan subalgebra of g with root system Φ then Φ,Φ′

are isomorphic.

Proof. Take ψ as in Proposition 14.1. Suppose t ∈ t, α ∈ Φ, eα ∈ gα. Then

[ψ(t), ψ(eα)] = ψ([t, eα]) = ψ(α(t)eα) = α(t)(ψ(eα)).

Now, ψ(eα) spans a root space for t′ so Φ′ = {α ○ ψ−1 ∣ α ∈ Φ}.

Theorem 13.3. If g′ is a semisimple Lie algebra with root system Φ then g ≅ g′.

Proof. Follows from the theory of finite structure constants (see Carter, Lie
algebras of Finite and Affine Type, section 7).

The idea is to choose a basis hαi of t and choose eα in each root space so
that for each α, [eα, e−α] = hα. This gives a basis of the Lie algebra. Then:

[hαi , hαj ] = 0 [hαi , eα] = α(hαi) [eα, eβ] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Nαβeα+β α + β ∈ Φ
hα β = −α
0 α + β /∈ Φ ∪ {0}

where Nαβ are the structure constants.
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Warm Up for Lecture 16: Let g = so5 α,β simple roots for the root
system of g,Φ. Recall that mα = gα ⊕ ⟨[gα,g−α]⟩ ⊕ g−α ≅ sl2. Decompose the
adjoint representation of g under the action of mα,mβ .

The following diagram has a dot for each root space, and the circle around
0 notates that t = g0 his dimension 2.

eβ

α

β 2α + βα + β

Suppose eα ∈ gα. Then eα ⋅ gγ = gλ+γ for all γ ∈ Φ, so each α-root string
corresponds to an irreducible subrepresentation (mα) of g.

g ∣mα= V (2)⊕ V (2)⊕ V (2)⊕ V (0),

g ∣mβ= V (2)⊕ V (1)⊕ V (1)⊕ V (0)⊕ V (0)⊕ V (0).

Weights

Let (Φ,E) be a root system and fix a root basis ∆ = {α1,⋯, αl}.

Definition. The root lattice ZΦ is {∑α∈Φ cαα ∣ cα ∈ Z} ⊆ E. The weight lattice
X is

X = {λ ∈ E, ⟨λ, α̌⟩ ∈ Z for all α ∈ Φ},

and the elements of the weight lattice are the weights.

Note that

1. ZΦ ⊆X.

2. If λ ∈X so is w(λ) for all w ∈W , since ⟨λ, α̌⟩ = ⟨w(λ), ˇw(α)⟩.

Example. For A1, the root lattice ZΦ is shown below the line, and X/ZΦ
is shown above.

−2α −α 0 α 2α

− 3α
2

−α
2

α
2

3α
2
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Lemma 14.1. X = {λ ∈ E ∣ ⟨λ, α̌⟩} ∈ Z for all α ∈ Φ}.

Proof. See Example Sheet.

Definition. For 1 ≤ i ≤ l, define ωi ∈ E by ⟨ωi, α̌i⟩ = δij , with {ωi} the funda-
mental weights with respect to ∆.

Then, Lemma 15.1 implies that X = {∑ ciωi ∣ ci ∈ Z}.

43



Examples. 1. For A2, ω1 is the green point below, and ω2 the red dot.

Hα1 ∶ ⟨⋅, α̌1⟩ = 0

⟨⋅, α̌1⟩ = 1

Hα2 ∶ ⟨⋅, α̌2⟩ = 0

⟨⋅, α̌2⟩ = 1

α1

α2

Here, [X ∶ ZΦ] = 3

2. For B2, again ω1 is shown in green and ω2 in red, and [X ∶ ZΦ] = 2.

α1

α2

Hα1 ∶ ⟨⋅, α̌1⟩ = 0

⟨⋅, α̌1⟩ = 1

Hα2 ∶ ⟨⋅, α̌2⟩ = 0

⟨⋅, α̌2⟩ = 1

Hα2 ∶ ⟨⋅, α̌2⟩ = 0
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3. For G2, again, ω1 is in green, ω2 in red, and now X = ZΦ.

α1

α2

Hα1 ∶ ⟨⋅, α̌1⟩ = 0

⟨⋅, α̌1⟩ = 1

Hα2 ∶ ⟨⋅, α̌2⟩ = 0

⟨⋅, α̌2⟩ = 1

Definition. λ ∈X is dominant if ⟨λ, α̌⟩ ≥ 0 for all α ∈ Φ+.

This is equivalent to:

• λ is in the closure of the fundamental Weyl chamber with respect to ∆.

• λ = ∑li=1 ciωi with all ci ∈ Z≥0.

From now on, g is semisimple with root system Φ and Cartan subalgebra t.
Choose eα ∈ gα for each α ∈ Φ such that [eα, e−α] = hα and ϕ ∶ g Ð→ gl(V ) a
finite dimensional representation.

Lemma 14.2. V =⊕λ∈t∗ Vλ where Vλ = {v ∈ V ∣ t ⋅ v = λ(t)v ∀t ∈ t}.

Proof. This follows directly from Lemma 9.1, where the commuting semisimple
endomorphisms are a basis of t.
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Proposition 14.3. 1. If v ∈ Vλ then eα ⋅ v ∈ Vλ+α.

2. If Vλ /= 0 then λ ∈X, i.e. λ(hα) ∈ Z for all α.

3. dimVλ = dimVwλ for all w ∈W .

Proof. 1. Fix t ∈ t. Then

t ⋅ eαv = ([t, eα] + eα ⋅ t)v = α(t)eα(v) + eαλ(t)v = (α + λ)(t)eαv.

2. Consider V ∣mα . We know hα acts by integer weights, so λ(hα) ∈ Z.

3. It suffices to assume w = wα for some α ∈ Φ. Consider

V ∣mα=⊕V j for V j mα–irreducible representations

Since the hα–weight spaces of V j are one dimensional we can choose a
basis v1,⋯, vn for Vλ with each vi in a distinct V j .

It suffices to prove that given vi ∈ V j there is an x ∈mα with x ⋅ vi ∈ Vwαλ.
We have wα(λ) = λ − ⟨λ, α̌⟩α. We know that {ek−αvi, ekαvi ∣ k ∈ Z≥0} spans
V j .

eαe−α eαe−α eαe−α

λ − 3α λ − 2α λ − α λ λ + α λ + 2α λ + 3α

Let M = max{k ∣ ekαvi /= 0}, m = max{k ∣ ek−αvi /= 0}. It suffices to show
−m ≤ −⟨λ, α̌⟩ ≤M . But

(λ +Mα)(hα) = −(λ −mα)(hα)

so λ(hα) =m −M , and since λ(hα) = ⟨λ, α̌⟩ we are done.

Definition. v ∈ V is a highest weight vector if

• v /= 0.

• v ∈ Vλ for some λ.

• eα(v) = 0 for all α ∈ Φ+.

Example. On the example sheet, you show there is a root α0 of maximal height
with representationsect to ∆. Any nonzero v ∈ gα0 is a highest weight vector
with respect to the adjoint representation.
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Warm up for Lecture 17: g = sl3, t a Cartan subalgebra with basis

hα1 =
⎡⎢⎢⎢⎢⎢⎣

1
−1

0

⎤⎥⎥⎥⎥⎥⎦
, hα2 =

⎡⎢⎢⎢⎢⎢⎣

0
1

−1

⎤⎥⎥⎥⎥⎥⎦
. Let V be the defining representation of g

with standard basis {e1, e2, e3}. We would like λi ∈ t∗ such that V =⊕Vλi , and
a basis for each Vi.

hα1 ⋅ e1 = e1; hα1 ⋅ e2 = −e2; hα1 ⋅ e3 = 0.

hα2 ⋅ e1 = 0; hα2 ⋅ e2 = e2; hα2 ⋅ e3 = −e3,

so let λ1(hα1) = 1, λ1(hα2) = 0. Then Vλ1 = ⟨e1⟩.
Let λ2(hα1) = −1, λ2(hα2) = 1, then Vλ2 = ⟨e2⟩.
Let λ3(hα1) = 0, λ3(hα2) = −1, then Vλ3 = ⟨e3⟩.
Note: λ1 = ω1, λ2 = −ω1 + ω2, λ3 = −ω2 in the weight diagram for A2, and

e1 is a highest weight vector, since eα ⋅ vλ ∈ Vλ+α, and ω1 + α1, ω1 + α2 are not
weights for V .

Lemma 14.4. 1. V has a highest weight vector.

2. If v ∈ Vλ is a highest weight vector then λ is a dominant weight.

Proof. 1. Choose any nonzero v0 ∈ Vλ (any λ). If v0 is a highest weight vector
then done, otherwise choose α ∈ Φ+ such that eαv0 /= 0. Let k1 = max{k ∣
ekαv0 /= 0}, and let v1 = ek1α v0 ∈ Vλ+k1α. Repeat this argument, replacing
v0 by v1. This process must end, since V is finite dimensional and each vi
is in a distinct weight space, as we always add on a positive root.

2. For α ∈ Φ+, we need to show that ⟨, λ, α̌⟩ ∈ Z≥0. Consider mα = ⟨eα, hα, e−α
acting on V . eα ⋅ v = 0 hα ⋅ v = λ(hα)v so v is a highest weight vector for
any mα ≅ sl2 acting on V , and hence λ(hα) ∈ Z≥0.

Our aim for now is to show that there is a correspondence between finite
dimensional irreducible representations of g and dominant weights.

Universal Enveloping Algebras

Our motivation for the next section is the following: if V is a representation of
g, v ∈ V then ⋯eαeβeγeα ⋅ v is not necessarily in V , but it will be in the algebra
we are about to define.

Definition. Suppose V is a vector space over k. The tensor algebra of V is

T (V ) = k ⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕⋯ =⊕
n≥0

V ⊗n,

with associated product given on generators by

v1 ⊗⋯⊗ vk ⋅ u1 ⊗⋯um = v1 ⊗⋯⊗ vk ⊗ u1 ⊗⋯um ∈ V ⊗(k+m).
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The symmetric algebra

Sym(V ) = T (V )/I

where I is the two-sided ideal generated by {x⊗ y − y ⊗ x ∣ x, y ∈ V }.

Note that:

• Sym(V ) =⊕n≥0 Symn(V ).

• We can identify Sym(V ) with k[V ], the algebra of polynomials on V .

• T (V ) and Sym(V ) are graded.

Definition. If g is a Lie algebra, the universal enveloping algebra of g is

U(g) = T (g)/J,

where J is the two-sided ideal generated by {x⊗ y − y ⊗ x − [x, y] ∣ x, y ∈ g}.

Note that:

• We often write x⊗ y as xy.

• If V is a representation of g then V is a U(g)-module via

x1 ⊗⋯⊗ xn ⋅ v = x1⋯xnv.

This is well-defined since (x⊗ y − y ⊗ x)v = (xy − yx)v = [xy]v.

• Recall that if V is a finite dimensional representation of sl2 we defined
Ω = ef + fe + 1

2
h2 ∈ gl(V ). Ω is naturally an element of U(g) independent

of V .

• In general, if g is semisimple with basis {x1,⋯xn} let {y1,⋯, yn} be the
dual basis with respect to the Killing form. Then Ω = ∑ni=1 xiyi ∈ U(g) is
called a Casimir element (version 3). In fact, Ω ∈ Z(U(g)).

• U(g) is not graded, e.g. g ⊗ g is not closed under addition, but it does
have a filtration. Let

Un = image of
n

⊕
i=0

g⊗i in U(g)

Then UnUm ⊆ Un+m.

Exercise. If x ∈ Un, y ∈ Um then xy − yx ∈ Um+n−1.

Let x = ∑ki=1 λix
i
1⋯xin, y = ∑lj=1 µjy

j
1⋯yjm, so

xy − yx =∑
i,j

λiµj(xi1⋯xiny
j
1⋯y

j
m − yj1⋯y

j
mx

i
1⋯xin),
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so it suffices to show x1⋯xny1⋯ym − y1⋯ymx1⋯xn ∈ Um+n−1 for xi, yi ∈ g.

Now, x1⋯xny1⋯ym − y1⋯ymx1⋯xn can be written

x1⋯xny1⋯ym − x2⋯xny1⋯ymx1

+x2⋯xny1⋯ymx1 − x3⋯xny1⋯ymx1x2

+⋯
+xny1⋯ymx1⋯xn−1 − y1⋯ymx1⋯xn.

So, it suffices to show we can pull an element of g from the front to the
end of the string and get a difference in Um+n−1, and then apply this to
x1, x2,⋯, xn in turn to show that each line above is in Un+m−1. For x1, we
have

x1⋯xny1⋯ym − x2⋯ymx1 = [x1, x2]x3⋯xny1⋯ym
+ x2[x1, x3]⋯ym
+ x2x3[x1, x4]⋯ym
+⋯
+ x2⋯ym−2[x1, ym−1]ym
+ x2⋯ym−1[x1, ym]

where each term is in Um+n−1 since g is closed under the Lie bracket, and
similarly for x2,⋯, xn.

Definition. The associated graded algebra is

gr(U(g)) = U0 ⊕ (⊕
n≥1

Un/Un−1) .

Theorem. (Poincare-Birkhoff-Witt) There is an algebra isomorphism Sym(g) ≅
gr(U).

Proof. (Sketch) Defining a map g Ð→ Un Ð→ Un/Un−1 gives a map from the
tensor algebra to the associated graded algebra, which by the exercise above
factors through the symmetric algebra Sym(g).

T (g) gr(U)

Sym(g)

Showing this map is surjective is straightforward, injective is harder. For a
proof, see Humphrey’s 17.4.

Corollary 15.1. If {x1, . . . , xn} is a basis of g then {xk11 ⋯xknn ∣ ki ∈ Z≥0} is a
basis for U(g).
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Proof. A basis for Sym(g) gives a basis for gr(U) which gives a basis for U(g).

Note that this implies that g injects into U(g).

Lemma 15.2. If V is a representation of g and v ∈ V then the minimal sub-
representation of V containing v is

U(g)v = {uv ∣ u ∈ U(g)}.

Proof. It is straightforward to check that U(g) contains:

• the elements x1⋯xkv for all xi ∈ g,

• all scalar multiples of the above, and

• sums of the above.

Warm up for lecture 18: Let V be a C-vector space with basis {v0, v1,⋯,}
and define an action of sl2 ib V by

e ⋅ v0 = 0; h ⋅ v0 = 0; f ⋅ vi = vi+1 ∀i.

We wish to show that v0, v1 are highest weight vectors for the avtion of sl2.
So, require e ⋅ vj = 0 for j = 0,1. Done for j = 0. For j = 1,

e ⋅ v1 = ef ⋅ v0 = ([ef] + fe)v0 = [ef]v0 = hv0 = 0.

We also need ⟨v0⟩, ⟨v1⟩ to contain their own images under h. We’re done for v0,
and for v1,

h ⋅ v1 = h ⋅ fv0 = ([hf] + fh)v0 = [hf]v0 = −2fv0 = −2v1

so v1 ∈ V−2 is a highest weight vector.
Note:

• ⟨{v1, v2,⋯}⟩ =W is a subrepresentation of V with V /W ≅ V (0).

• In general, if V (n) is a vector space with basis {v0, v1,⋯} with sl2 action
given by

e ⋅ v0 = 0, h ⋅ v0 = nv0, f ⋅ vi = vi+1,

then vn+1 is a highest weight vector and Wn = ⟨{vn+1, vn+2⋯}⟩ has

V (n)/Wn ≅ V (n).
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Highest Weight Modules

Throughout, g is semisimple, t is a Cartan subalgebra, Φ is roots of g with
respect to g and ∆ = {α1,⋯, αl} is a root basis.

Recall that if V is a representation of g, Vλ = {v ∈ V ∶ tv = λ(t)v∀t ∈ t∗}.
Note:

• This definition makes sense even if V is infinite dimensional.

• The definition of highest-weight vector also makes sense if V is infinite
dimensional.

• If eα ∈ gα is non-zero then eα ⋅Vλ ⊆ Vλ+α (even if V is infinite dimensional).

Definition. A representation V of g is called a highest-weight module if V
contains a highest weight vector v such that V = U(g)v.

Examples. 1. Any finite dimensional irreducible representation V of g is
a highest weight module, since V contains a highest weight vector by
Lemma 15.4, and Lemma 16.2 implies that U(g) is a subrepresentation,
so by Weyl’s Theorem is all of g.

2. The representation of sl2 from the warm up: v0 highest weight vector,
vi = f iv0 so V = U(g)v0.

Note:

• Not every highest weight module is irreducible.

• If V is an infinite dimensional highest weight module, v ∈ Vλ a highest
weight vector then λ is not necessarily dominant.

Notation: η+ = ∑α∈Φ+ gα, η− = ∑α∈Φ− gα so g = η+ ⊕ t⊕ η−

Example. With the usual root basis for sln, η+ is the strictly upper triangular
matrices.

Lemma 16.1. Suppose V is a highest weight module with highest weight vector
v such that V = U(g)v. Then V = U(η−)v.

Proof. Choose a basis {x1,⋯xn} of η−, {t1,⋯, tl} of t and {y1,⋯yn} of η+.
Then U(g) = ⟨xk11 ⋯xknn tm1

1 ⋯tmll yr11 ⋯yrnn v⟩ but yi ⋅ v = 0 for all i, and ti ⋅ v ∈ ⟨v⟩
so U(g)v = U(η−)v.

Proposition 16.2. Let V be a highest weight module with highest weight vector
vλ ∈ Vλ such that V = U(g)vλ. Then:

1. V =⊕µ∈D(λ) Vµ where Dλ = {λ −∑li=1 kiαi ∣ ki ∈ Z≥0}.

2. Any submodule of V is a direct sum of weight spaces Vµ.

3. Dim(Vλ) = 1 and any other Vµ is finite dimensional.
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4. V is irreducible if and only if every highest weight vector lies in Vλ.

5. V contains a maximal proper subrepresentation.

Proof. 1. V = U(η−)vλ = ⟨{e−β1e−β2⋯e−βkvλ ∣ βi ∈ Φ+, k ∈ Z≥0}⟩, with the
generators in Vλ−∑ki=1 βi

2. Exercise.

3. Follows form 1, plus the fact that given µ there is only a finite number of
ways to write µ as λ −∑ki=1 βi for βi ∈ Φ+.

4. Now suppose that V has a highest weight vector vµ ∈ Vµ with µ /= λ. Then
U(g)vµ is a subrepresentation and vλ /∈ U(g)vµ. This is since weights
for U(g)vµ are of the form µ − ∑kiαi so U(g)vµ is a nontrivial proper
subrepresentation.

Suppose V is reducible with nontrivial proper subrepresentation U . By
(2), U is a direct sum of weight spaces Vµ. Choose µ to be λ = µ −∑kiαi
such that Vµ ⊆ U and ∑ki is minimal. Let vµ ∈ Vµ be nonzero, α ∈ Φ+ and
eα ∈ gα. Then

eα ⋅ vµ ∈ Vµ+α ∩U = 0.

by choice of U . So vµ is a highest weight vector for V .

5. Take the sum of all the proper subrepresentations, call it V. vλ /∈ V so
V /= V .

Warm Up for Lecture 19: If Φ, α ∈ ∆ and λ is a dominant weight, then
λ−α is a dominant weight. In particular, (λ−α,λ−α) ≤ (λ,λ). This is because

(λ − α,λ − α) = (λ,λ) − (α,λ) − (λ − α,α) = (λ,λ) − (something positive).

Definition. If V is a highest weight vector with v ∈ Vλ and V = U(g)v, v a
highest weight vector, say that V is of highest weight λ.

Fix a basis for g of the form {hαi , eαi ∣ 1 ≤ i ≤ l, α ∈ Φ} such that eα ∈ gα,
[eα, e−α] = hα.

Definition. Given λ ∈ t∗, the Verma module M(λ) is

M(λ) = U(g)/Kλ

where Kλ is the left ideal generated by {eα, hαi − λ(hαi) ∣ 1 ≤ i ≤ l, α ∈ Φ+}.

Proposition 16.3. 1. M(λ) is a highest weight module of highest weight λ.

2. M(λ) is universal in the sense that if mλ ∈ M(λ)λ is a highest weight
vector and V is a highest weight module of highest weight λ with highest
weight vector vλ ∈ Vλ then there is a unique g-equivariant linear map
M(λ)Ð→ V with mλ z→ vλ.
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Proof. 1. Let mλ = 1 +Kλ ∈M(λ). Then

hαi(mλ) = hαi +Kλ = λ(hαi)mλ.

If α ∈ Φ+ then
eα ⋅mλ = eα +Kλ =Kλ = 0 ∈M(λ),

so mλ is a highest weight vector of highest weight λ. It is clear that
U(g)mλ =M(λ) so any other highest weight vector is a scalar multiple of
this one (by Proposition 17.2).

2. Note that {e−β1 ,⋯e−βk ⋅mλ ∣ βi ∈ Φ+, k ∈ Z≥0} is a basis for M(λ). Define
ϕ ∶M(λ) Ð→ V by ϕ(e−β1 ,⋯e−βk ⋅mλ) = e−β1 ,⋯e−βk ⋅ vλ. Can check that
ϕ is g-equivariant.

Exercise. Check: if α ∈ Φ+, ϕ(eαe−β1⋯e−βkmλ) = eαe−β1⋯e−βkvλ (by
induction on k, using bracket).

Proposition 16.4. Given λ ∈ t∗, there is a unique irreducible highest weight
module with highest weight λ, called V (λ).

Proof. By Proposition 17.2, M(λ) has a unique maximal proper submodule I.
Then M(λ)/I is irreducible, and uniqueness follows form the universal property.

Example. In warm up for lecture 18, V =M(0), I = ⟨,{v1, v2,⋯}⟩ andM(0)/I ≅
V (0) the trivial representation of sl2.

Proposition 16.5. V (λ) is finite dimensional if and only if λ is a dominant
weight.

Proof. If V (λ) is finite dimensional then use Lemma 15.4 (ii) by acting by the
root sl2s.

Now suppose that λ is a dominant weight. We proceed by a series of reduc-
tions:

1. Let Π(λ) = {µ ∶ V (λ)µ /= 0}. It suffices to show that Π(λ) is finite, by
Proposition 17.2 (3).

2. It suffices to show that dim(V (λ)µ) = dim(V (λ)wµ) for all elements w of
the Weyl group, since there are only finitely many dominant weights in
Π(λ) and any weight is conjugate under the Weyl group to a dominant
weight.

3. It suffices to show (2) for the simple reflections.
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4. It suffices to show that for fixed µ ∈ Π(λ), αi ∈ ∆,

V (λ)µ ⊆ finite dimensional mαi subrepresentation of V (λ),

by the same logic as Proposition 15.3.

Fix such a µ,αi.

Claim: There is an M ≥ 0 such that V (λ)µ+nαj = 0 for all n >M .

Proof of Claim: We know µ = λ −∑kiαi, with ki ∈ Z≥0. Take M = kj .
Now, we know V (λ)µ ⊆⊕n≤m V (λ)µ+nαj , which a priori is a representation
of mαj but isn’t finite dimensional.

It’s enough to show that given v ∈ V (λ)µ there is an n ≥ 0 such that
en−αjv = 0 Take v nonzero in V (λ)µ. We know

v = e−βe−β2⋯e−βkvλ,

where vλ ∈ V (λ)λ, for some βi ∈ Φ+, k ∈ Z≥0.

Now we proceed by induction on k: for k = 0, v = vλ we have

hαj ⋅ v = λ(hαj)v.

Recall Lemma 4.1 says that for all n ≥ 1

eαje
n
−αjvλ = n(λ(hαj) − n + 1)en−1

−αjvλ.

Let N = λ(hαj)+1 ≥ 1. Then we claim eNαjvλ is a highest weight vector for

V (λ) if it is nonzero. Take α ∈ Φ+, eαje
N
−αjvλ ∈ V (λ)λ−Nαj+α so eN−αjvλ is

a highest weight vector in V (λ)λ−Nαj /= V (λ)λ, which is a contradiction,

so eN−αjvj = 0.

The induction step follows from

Exercise. If α,β ∈ Φ then

enαeβ =
A

∑
i=1

cieβ+iαe
n−i
α

where the ci are constants and A = max{k ∶ β + kα ∈ Φ}.

We’ve just shown that there is a bijection between dominant weights λ and
finite dimensional irreducible representations of g V (λ).
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Weights and Characters

Throughout this section, g is a semisimple Lie algebra, t a Cartan subalgebra,
and ∆ = {α1,⋯, αl} ⊆ Φ is a choice of root basis inside the set of roots, X is the
weight lattice, and W is the Weyl group.

Warm up for Lecture 20: Let ρ = 1
2 ∑γ∈Φ+ γ. For A1,A2,B2 we compute

⟨ρ, α̌⟩ for all α ∈ ∆. For A2,B2 with ∆ = (α1, α2), ρ = α1+α2

2
= ω1 + ω2.

• A1: {−α,α}, ρ = α
2

, ⟨ρ, α̌⟩ = 1.

• A2: ⟨ρ, α̌1⟩ = ⟨ω1 + ω2, α̌1⟩ = 1.

• B2: ⟨αi, ρ̌⟩ = 1.

Claim: ρ = ∑li=1 ωi.
Proof: It suffices to show that ⟨ρ, α̌j⟩ = 1 for all αj ∈ ∆. We have

wαj(ρ) = ρ − ⟨ρ, α̌j⟩αj ,

and also

wαj(ρ) = wαj(
1

2
( ∑
α∈Φ+/{αj}

α) + 1

2
αj),

and wαj permutes Φ+/{αj} so this is

1

2

⎛
⎝ ∑
α∈Φ+/{αj}

α
⎞
⎠
− 1

2
αj = ρ − αj .

So, comparing the two expressions, we obtain ⟨ρ, α̌j⟩ = 1.
Recall

Π(λ) = {µ ∣ V (λ)µ /= 0}

Our goals for this section will be to answer the following questions:

1. What is Π(λ)?

2. What is dim(V (λ))?

Definition. Define a partial ordering ≺ on X by

µ ≺ λ ⇐⇒ λ − µ =
l

∑
i=1

kiαi, ki ∈ Z≥0∀i

Note that:

• Π(λ) ⊆ {µ ∶ µ ≺ λ}

• To find Π(λ), it’s enough to find the dominant weights in Π(λ).

Proposition 17.1. Suppose λ,µ are both dominant weights, then

µ ∈ Π(λ) ⇐⇒ µ ≺ λ
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Proof. Suppose µ ≺ λ. We know that µ = λ −∑α∈Φ+ kαα for some kα ∈ Z≥0, and
we’ll proceed by induction on ∑kα.

Base case: ∑kα = 0 (done).
Warm up case: Suppose µ = λ − α for α ∈ Φ+. Then

⟨µ, α̌⟩ = ⟨λ, α̌⟩ − 2 ≥ 0

so ⟨λ, α̌⟩ ≥ 2. Take vλ ∈ Vλ to be nonzero. Since hα ⋅ vλ = nvλ for some n ≥ 2 we
know that e−αvλ /= 0 by sl2 theory (it’s in V (λ)λ−α = V (λ)µ). Suppose we know
the claim is true for ∑kα = n − 1 and suppose ∑kα = n, so µ = λ − β1 −⋯ − βn.

We now split into cases:

Case 1 : ⟨βi, β̌j⟩ < 0 for some i, j with i /= j, without loss of generality i < j. This
implies βi + βj is a positive root (Weyl group + sum of positive roots is
positive) so

n

∑
k=1

βk =
i−1

∑
k=1

βi +
j−1

∑
k=i+1

βk + (βi + βj) =
n−1

∑
k=1

γk

with γk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

βk k ≤ i − 1
βk+1 i < k < j
βk+2 j < k
βi + βj k = n − 1

and so γ)k ∈ Φ+ for all k and by the

inductive hypothesis we are done.

Case 2 : ⟨βi, β̌j⟩ ≥ 0 for all i, j with i /= j.
In this case,

Claim: λ −∑ri=1 βi ∈ Π(λ) for all 1 ≤ r ≤ n.

We’ll prove the claim by induction on r. If r = 1,

0 ≤ ⟨λ −
n

∑
i=1

βi, β̌1⟩ = ⟨λ, β̌1⟩ − 2 −
n

∑
i=2

⟨βiβ̌1⟩

The leftmost term is positive by assumption, so ⟨λ, β̌1⟩ ≥ 2, so considering
the action of mβ1 so λ − β1 ∈ Π(λ).

For the induction step, the same logic implies that

⟨λ − sumr
i=1βi, β̌r ≥ 0

and the action by mβr so λ −∑ri=1 βi ∈ Π(λ).

Warm Up for Lecture 21: Let {α1, α2} be root basis of G2 with α1 short.
We wish to calculate Π(2ω1).

ω1 has
⟨ω1, α̌2⟩ = 0, ⟨ω1, α̌1⟩ = 1

and the dominant weights in Π(2ω1) are exactly the dominant µ with µ ≺ 2ω1

by Proposition 18.1.
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α1

2ω1

ω1α2

ω2

2ω1 = 2(α2 + 2α1) = 2α2 + 4α1.
ω2 = 3α1 + 2α2 so ω2 ≺ 2ω1, but ω2 + ω1 /≺ 2ω1. So the dominant weights in

Π(2ω1) are {ω1,2ω1, ω2,0}. The Weyl conjugates of ω1 are the short roots, and
of the Weyl conjugates of ω2 are all the long roots. So,

Π(2ω1) = { short roots } ∪ { 2(short roots)} ∪ { long roots }
= Φ ∪ {±2ω1,±2α1,±2(α1 + α2),0}

Definition. Let Z[X] be the free Z-module with basis {eµ ∣ µ ∈ X} with
multiplication eµeλ = eλ+µ, commutative ring (extending linearly) with identity
e0 = 1.

Definition. Let V be a finite dimensional representation of g. The formal
character of V is

ch(V ) = ∑
µ∈X

dim(Vµ)eµ ∈ Z[X]

(note that the sum is finite).

Recall form the example sheets that l(w) is the minimal n such that w can
be written as a product of n simple reflections.

Definition. The sign of w, sn(w) = (−1)l(w).

Example. For g = sln, sn(w) = sgn(w) ∈ Sn as W ≅ Sn.

Theorem. (Weyl Character Formula) If λ is a dominant weight, and ρ =
1
2 ∑α∈Φ+ α = ∑nj=1 ωj ,

ch(V (λ)) = ∑w∈W sn(w)ew(λ+ρ)

eρ∏α∈Φ+(1 − e−α)

Proof. c.f. Grojnowski Chapter 10.

Corollary. (Weyl Denominator Formula)

eρ ∏
α∈Φ+

(1 − e−α) = ∑
w∈W

sn(w)ewρ

Proof. ch(V (0)) = 1, so plug λ = 0 into the character formula.
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Corollary. (Weyl Dimension Formula) If λ is a dominant weight then

dim(V (λ)) = ∏α∈Φ+⟨λ + ρ, α̌⟩
∏α∈Φ+⟨ρ, α̌⟩

Proof. By definition, ch(V (λ)) = ∑µ∈X dim(Vµ)eµ. We’d like to substitute eµ =
1 into the character formula for any µ, but could get 0

0
.

Suppose µ ∈X, p ∈ Z[X]. Define fµ(p) ∶ R≥0 Ð→ R by

fµ(eλ)(t) = t−(µ,λ)

and extending linearly.
Then fµ is multiplicative and fµ(p) is a continuous differentiable function

on R>0. Apply to the denominator formula so for all µ ∈X, t ∈ R>0,

t−(ρ,µ) ∏
α∈Φ+

(1 − t(α,µ)) = ∑
w∈W

sn(w)t−(ρ,ωα)

And also pplying fp to the Weyl character formula,

fp(ch(V (λ)))(t) = ∑w∈W t−(p,w(λ+ρ))

t−(p,ρ)∏α∈Φ+(1 − t(p,α))
Using the above with µ = λ + ρ,

fp(ch(V (λ)))(t) = t
(−p,λ+ρ)∏α∈Φ+(1 − t−(α,λ+ρ))
t−(p,ρ)∏α∈Φ+(1 − t(p,α))

Note that
fp(ch(V (λ)))(t) = ∑

µ∈X
dim(V (λ))t−(p,µ)

so taking a limit as t tends to 1,

dim(V (λ) = ∏α∈Φ+(λ + ρ,α)
∏α∈Φ+(ρ,α)

= ∏α∈Φ+⟨λ + ρ, α̌⟩
∏α∈Φ+⟨ρ, α̌⟩

Example. Let g = sl3 and let λ =m1ω1 +m2ω2. We will calculate dim(V (λ)).
ρ = α1 + α2 and so

∏
α∈Φ+

⟨λ + ρ, α̌⟩ =⟨m1ω1 +m2ω2 + α1 + α2, α̌1⟩
× ⟨m1ω1 +m2ω2 + α1 + α2, α̌2⟩

× ⟨m1α1 +m2α2 + α1 + α2, ˇ(α1 + α2)⟩
=(m1 + 1)(m2 + 1)(m1 +m2 + 2)

∏α∈Φ+⟨ρ, α̌⟩ = (1)(1)(2) and therefore

dim(V (λ)) = (m1 + 1)(m2 + 1)(m1 +m2 + 2)
2

.
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Warm Up for lecture 22: For g = sl3, with V (ω1) the defining repre-
sentation, decompose Sym2(V (ω1)) into irreducibles. Note that e1 is a highest
weight vector for V (ω1), and recall that a basis for Sym2 V (ω1) is ei ⊗ ej with
1 ≤ i ≤ j ≤ 3. For Sym2(V (ω1)), e1 ⊗ e1 is a highest weight vector, since if
α ∈ Φ+,

eα ⋅ (e1 ⊗ e1) = (eαe1)⊗ e1 + e1 ⊗ (eαe1) = 0⊗ e1 + e1 ⊗ 0 = 0.

and if t ∈ t,

t⋅e1⊗e1 = (te1)⊗e1+e1⊗(te1) = (ω1(t)e1)⊗e1+e1⊗(ω1(t)e1) = 2ω1(t)(e1⊗e1)

So V (2ω1) is a subrepresentation.

dim(V (2ω1)) =
1

2
(3)(1)(4) = 6

so Sym2 V (ω1) ≅ V (2ω1).

Weight Diagrams for sl3

V (2ω1)

The dominant weights are 2ω1 and 2ω1 − α1 = ω2

α1

α2

2ω1

ω2

V (2ω1 + ω2)

µ Number of Weyl conjugates dim(V (2ω1 + ω2)µ)
2ω1 + ω2 6 1

2ω2 3 1
ω1 3 2
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α1

α2

ω1

ω2
2ω1 + ω2

and dim(V (2ω1 + ω2)) = 1
2
(3)(2)(5) = 15.

Handy fact: dim(V (λ)µ) ≤∣ {β1,⋯, βk ∣ µ = β1 − ⋯ − βk}. This is since if
v ∈ V (λ)λ is a highest weight vector then can find a basis for V (λ) of the form
e−β1⋯e−βkv.

In our case, ω1 = 2ω1 + ω2 − (α1 + α2) = 2ω1 + ω2 − (α1) − (α2)

Exercise. For g = sl3, decompose V (2ω1)⊗ V (ω2) into irreducibles.
Hint: V (2ω1 + ω2) is a subrepresentation.

Weight diagrams for G2, adjoint representation

ω1

α1

α2

The long roots span an A2 - can decompose the adjoint representation of G2

under action of sl3.
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9 Groups

Throughout, g semisimple, ∆,Φt as usual, hα ∈ t. For α ∈ Φ, choose eα ∈ gα
such that [eα, e−α] = hα.

We’ve defined two groups in this course:

1. The group of inner automorphisms of g:

Gad = ⟨exp(adx) ∣ adx,x ∈ g is nilpotent⟩

2. The Weyl group W .

We can say some things about the structure of Gad.

Example. g = sl2
Recall that if x ∈ g is nilpotent then exp(ad(x))(y) = exp(x)y exp(x)−1 for

all y ∈ g (Lemma 8.1).
Claim 1 : If g ∈ SL2(C) then the map ϕg ∶ gÐ→ g given by

ϕg(x) = gxg−1

is an element of Gad.

To see this, let e = [0 1
0 0

] , f = [0 0
1 0

] as usual. Then te, tf are nilpotent for

any t ∈ C, and exp(te) = [1 t
0 1

] , exp(tf) = [1 0
t 1

] and

SL2(C) = ⟨[1 t
0 1

] , [1 0
t 1

] ∣ t ∈ C⟩

Define ϕ ∶ SL2(C)Ð→ Gad by ϕ(g) = ϕg. By Lemma 8.1 this is surjective.

Ker(ϕ) = ⟨[−1 0
0 −1

]⟩

so Gad = P GL2(C).

Now, for general g, given α ∈ Φ define a map uα ∶ CÐ→ Gad by

uα(t) = exp(ad(teα))

Lemma 18.1. uα is an injective homomorphism.

Proof. To see that it is a homomorphism,

exp(ad(t + s)eα) = exp(ad(teα) + ad(seα)) = exp(ad(teα)) exp(ad(seα))

To see that it is injective,
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exp(ad(teα))hα =hα + t[eα, hα] +⋯
=hα − 2teα

=hα ⇐⇒ t = 0

Definition. uα is called a root group homomorphism. Let Uα be the image of
uα, then Uα is called a root group.

Definition. If G is a group, a representation of G is a homomorphism G Ð→
GL(V ) for some vector space V . All vocabulary translates over from represen-
tations already discussed.

Let Gα = ⟨Uα, U)−α⟩, a subgroup of Gad. Then g is a representation of Gα

Lemma 18.2. If V is an mα subrepresentation of G, then V is a Gα subrep-
resentation of g.

Proof. Take v ∈ V , uα(t) ⋅ v = ∑∞
n=0 cne

n
α ⋅ v ∈ V so Gα ⋅ V ⊆ V .

So:

• mα is a Gα subrepresentation of g.

• Ker(α) ⊆ t is a Gα subrepresentation of g.

• If β /= ±α, then let
Vβ =⊕

k∈Z
gβ+kα

This is also a Gα subrepresentation.

Proposition 18.3. 1. There is a surjective homomorphism Gα Ð→ P GL2(C).

2. There is a surjective homomorphism ϕ ∶ SL2(C)Ð→ Gα such that

ϕ([1 t
0 1

]) = uα(t); ϕ([1 0
t 1

]) = u−α(t)

3. Gα is isomorphic to either P GL2(C) or SL2(C).

Proof. Let Inn(sl2) be the group of inner automorphisms of sl2, isomorphic to
P GL2(C).

1. Sincemα is a subrepresentation, the action ofGα preservesmα. uα(t), u−α(t)
act on mα by inner automorphisms, so we get a homomorphism

Gα Ð→ Inn(sl2) ≅ P GL2(C)

This is surjective since if we write mα Ð→ sl2 with eα z→ e, e−α z→ f
then with respect to this identification

uα(t) ∣mα= exp(ad te); u−α(t) ∣mα= exp(ad tf)

and Inn(sl2) = ⟨exp(ad te), exp(ad tf) ∣ t ∈ C⟩.
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Note (1) and (2) imply 3 since SL2(C) Gα P GL2C

Π

where Π

is the surjective map SL2(C)Ð→ P GL2(C) with kernel ⟨[−1 0
0 −1

]⟩.

For (2), the idea is to define a map ϕα ∶ SL2(C) Ð→ GL(g) and show that
im(ϕα) = Gα.

Recall that g =mα⊕Ker(α)⊕Vβ where Vβ = ⊕kgβ+kα so it suffices to define
an action on each piece.

mα: ϕα(x)(y) = xyx−1, x ∈ SL2, y ∈mα.

Ker(α): Suppose h ∈ Ker(α).

uα(t) = exp(ad teα)(h)
= h + t[eα, h] +⋯
= h

so uα(t) acts as the identity n Ker(α). Similarly, u−α(t)(h) = h, so define
ϕα(x)(h) = h for all x ∈ SL2, h ∈ Ker(α).

Vβ : This uses

Warm up for Lecture 24: Let Pn = {a0x
n+a1x

n−1y+⋯+anyn ∣ ai ∈ C}.
Then SL2(C) acts on Pn via

[a b
c d

] ⋅ f(x, y) = f(ax + cy, bx + dy)

For n = 2,

[1 t
0
] ⋅ x2 = x2; [1 t

1
] ⋅ xy = xy + tx2; [1 t

1
] ⋅ y2 = (tx + y)2

and

Lemma 18.4. Given β /= ±α, let dim(V )β = n + 1. Then there is an
isomorphism of vector spaces ϕβ Ð→ Pn such that

ϕβ(uα(t) ⋅ v) = [1 t
0 1

] ⋅ ϕβ(v); ϕβ(u−α(t) ⋅ v) = [1 0
t 1

] ⋅ ϕβ(v)

Proof. (Sketch) without loss of generality β−α is not a root, else vβ = vβ−α
and can do a replacement. Define

ϕβ(eβ+kα) = dkxkyn−k

for some well chosen constants dk (c.f. Carter, ”Simple Groups of Lie
Type,” 16.2).
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Now, if β /= ±α, we can define ϕα(x)(y) = x ⋅ ϕβ(y) for all y ∈ Vβ , x ∈

SL2(C). Note that by construction ϕα([
1 t
0 1

]) = uα(t) ∈ GL(g) and

ϕα([
1 0
t 1

]) = u−α(t) ∈ GL(g) and so

im(ϕα) = Gα.

The Weyl group acts on t via w ⋅hαi = hw(αi) for all i and extending linearly.

Exercise. Under this action, w ⋅ hα = hw(α) for all w ∈W,α ∈ Φ.

Hint: Write hα = ∑ cihαi , Things are equal in t ⇐⇒ they are equal in
every root, so is sufficient to prove the claim for w = wβ . Note that γ(hw(α)β) =
⟨γ, ˇwαβ⟩.

Proposition 18.5. Let nα = ϕα([
0 1
−1 0

]) ∈ Gad. Then for all β ∈ Φ,

nα ⋅ hβ = hwα(β); nα ⋅ eβ = ±ewα(β)

Proof. (Sketch): Action on mα

[ 0 1
−1 0

] [0 1
0 0

] [0 −1
1 0

] = [ 0 0
−1 0

]

so nα ⋅ eα = −e−α, and similarly nα ⋅ e−α = −eα, nα ⋅ hα = −hα = h−α = hwα(α). If

β /= ±α, then hβ − 1
2
⟨α, β̌⟩hα ∈ Ker(α).

nα(hβ −
1

2
⟨α, β̌⟩hα) = hβ −

1

2
⟨α, β̌⟩hα

so

nα(hβ) +
1

2
⟨α, β̌⟩hα = hβ −

1

2
⟨α, β̌⟩hα

so
nα(hβ) = hβ − ⟨α, β̌⟩hα

and it suffices to show that γ(hβ − ⟨α, β̌⟩hα) = γ(hwα(β)) for each γ ∈ Φ.

The left hand side is ⟨γ, β̌⟩−⟨α, β̌⟩⟨γ, α̌⟩, and the right hand side is ⟨γ, ˇwαβ⟩ =
⟨wαγ, β̌⟩ = ⟨γ − ⟨γ, α̌⟩, β̌⟩, so we are done.

Generalising all of this:

1. Can replace ad with an arbritrary representation ϕ ∶ g Ð→ gl(V ). Can
define uα(t) = exp(ϕ(teα)) for all t, α and the group generated by ⟨uα ∣
α ∈ Φ⟩ is a subgroup of GL(V ).

2. If careful, this can be done for any group.
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