Lie Algebras and their Representations

Notes by Eve Pound*

Based on lectures by Dr Beth Romano

1 Lie Algebras in the Wild

1.1 Where do Lie algebras come from?

A Lie group is (essentially) a group that is also a smooth manifold, for example
GL,,SL,,S0,,Sp,,. Let G be a Lie group. Then the Lie algebra of G is
the tangent space at the identity g = T.G. g is a vector space with additional
structure.

By taking a differential we can turn the conjugation map

G — Aut(G)

g—9()g"

into a map
ad : g — End(g).

This gives a bilinear map
[-]:gxg—g
[z,y] — ad(z)y.
We will often drop the comma for brevity.

Example. If G = GL,(R), g = M,xn(R) and [zy] = zy - yx

1.2 What are Lie algebras good for?
1. They tell us about the structure of G.

Example. We'll define the root system of g. This tells you about com-
mutator relations in G (See Carter, Simple Groups of Lie Type).

Example. We'll define the Weyl group of g. For example, the Weyl group
of GL,(C) is Sp. There is an embedding S,, = GL,,(C) via permutation
matrices permuting a basis.

*corrections to ep455@Qcam.ac.uk



Let B be an upper triangular matrix in G. Then

G = | | BwB (Bruhat decompostion).

wesS,

2. They tell us about representation theory.

Example. There’s a bijection
{finite dim representations of SL,,(C)} < {finite dim representations of Lie(SL,(C))}.

We will completely describe the right hand side.

3. They have applications to algebraic geometry. It’s possible to use Lie
algebras to build families of surfaces or algebraic curves (see Slodowy,
Simple Singularities and Simple Algebraic Groups).

We'll define the Dynkin diagram of a semisimple Lie algebra

Example.

This tells you about singularities on surfaces.

4. They have applications to Number Theory. Root systems / Weyl groups
give structure of groups over Q,, (see paper of Iwahori-Matsumoto)

The local Langlands correspondence predicts a relationship

{Galois Theory of local fields} <> {Complex Lie Theory}

There are many other applications that we have not mentioned here (for
example to algebraic groups and theoretical physics).

2 Basic Definitions and Examples

Definition. Let k be a field. A Lie algebra over k is a vector space g over k
with a bilinear pairing

[,-]:gxg—g “Lie Bracket”
such that
1. [zx]=0Vzeg
2. [z[yz]] + [y[zx]] + [2[zy]] = 0 Va,y,z € g (The Jacobi Identity).

Exercise. Check that this definition implies that [2zy] = —[yz] (Antisymmetry
of the bracket).



By definition, [z + y,z + y] = 0. So by bilinearity we have

0=[z+y,z+y]l=[z+yz]+[z+yy]=[zz]+[zy] + [yz] + [yy],

so [zy] = —[yx], as by definition we have [zz] = [yy] =0

Definition. § is a subalgebra of g if b is a subspace of g and [zy] € § for all

x,y €h.

Examples. Let V be a finite dimensional vector space over k.

1. Let gl(V) = End(V) with bracket given by [zy] = zy — yz, where the

multiplication is in the endomorphism ring. It is clear [zz] = 0.

Exercise. Check the Jacobi identity.

[z[yz]] + [y[zz]] + [2[zy]] = 2(yz - 2y) - (y2 - 2y)z + y(22 - 22) - (22 -
x2)y + z(xy — yx) - (zy — yx)z. Regrouping, this is z(yz - 2y + 2y —yz) +
y(—zx + 2z —xz+22) + 2(yxr — 2y + vy — yx) = 0.
If we choose a basis for V' we can identify gl(V') with the space of n x n
matrices over k, so we often write gl(V') as gl,,.

. Let sl(V) = {z € gl(V) | tr(x) = 0}. This is a subspace, as trace is lin-
ear, and closed under the Lie bracket, as trace is symmetric, so it’s a
subalgebra.

Note that dim(sl(V)) =n? — 1. We take the standard basis:

1

-1
0

0 -

9

0

0
[0 1 0 ... 0]J0O O 1 ... O]
0 0
0 0] O 0

and we often write sl,,.

. Assume char(k) # 2. Suppose V is endowed with a symmetric bilinear
form

(,):VxV —k.
Let so(V) = {z e gl(V) | (zv,w) = —(v, zw) for all v,w e V}.
In co-ordinates, we know that there is a matrix M € GL(V) such that
(v,w) = vT Mw, so

so(V)={z|Mz+2TM=0}.



We'll usually take

2 0 ifn=20

M = 1 0 0
0 0 I ifn=20+1.
0 I, O

2.0.1 Warm Up for Lecture 2

o ) S R F

viewed as matrices in slo(C) - the standard basis from lecture 1. Then we

have

Let

[ef]=h, [he]=2e, [hf]==-2f
We’ll see that in some sense the structure of all semisimple Lie algebras come

from sl5(C).
Continuing the examples from last time, and recalling that we had V a

k-vector space,

4. Again, assume char(K) # 2, and suppose that V is endowed with a non-
degenerate skew-symmetric bilinear form (-,-) (that is, (v, w) = —(w,v)).

Exercise. Check 3,4 are Lie subalgebras of gl(V).

Then,
sp(V) ={x e gl(V) | (zv,w) = —(v,z2w) VYv,weV}.

In co-ordinates we’ll take {, ) to be the skew-symmetric form associated to

[—Oll ‘8] where n = 2[. Note n must be even as V has a skew-symmetric form.

5. V is a Lie algebra with bracket [vw] =0 for all v, w.

Note: Our definition of gl(V') makes sense for V infinite dimensional.

Definition. A linear transformation ¢ : g — h between two Lie algebras

is a homomorphism if [p(z)¢(y)] = ¢([zy]) for all z,y € g. If ¢ is also an
isomorphism of vector spaces it is a isomorphism.



3 Representations Part 1

Let g be a Lie algebra.

Definition. A representation of g is a Lie algebra homomorphism g — gl(V")
for some V.

Notation. e We also call V itself a representation.
e We also write g O V and say “g acts on V.”
o We write z-v or v for ¢(z)(v).
Definition. The dimension of the representation is dim (V).

Examples. 1. (The trivial representation) Let V be a 1-dimensional vecotr
space. Then g O V viaxz-v=0forall zeg,veV.

2. (The defining representation) If g is defined as a subalgebra of gl(V') there
is a natural inclusion g < gl(V').

3. (The adjoint representation) For x € g define adx : g — g, y —> [zy].
Then, the map

g — ol(g)
r+— adx
is the adjoint map.

This is a Lie algebra homomorphism: we’ll check [ad z, ady](z) = ad([zy])(2).
The left hand side is

[2lyz]] - [yle=]] = ~[[z2]y] - [[yz]=] = [[2y]=]

which is the right hand side, where the last step is an application of the
Jacobi identity.

Example. Recalling the multiplications in the warm up, the adjoint rep-
resentation of sly(C) (with basis {e, h, f} in that order) has

2 0 -2 0 0 00
ad(h)=| 0 . ad(e)=|0 0 1|, ad(f)=|-1 0 0
-2 0 0 0 0 20

4. If V,W are representations so is V@ W via z - (v,w) = (zv, zw).
5. If V is a representation of g then so is the dual V* via
(z- f)(w) =-f(av)
foreach xeg,veV, feV*.

Exercise. Check this is a Lie algebra homomorphism.



6. If V,W are representations of g then so is Hom(V, W) via
(z-f)w) =z f(v) - f(z-v).

Definition. If VW are representations of g then a linear transformation ¢ :
V — W is called g-equivariant if for all x € g,v € V, - p(v) = p(x-v). V and
W are isomorphic if there is a g-equivariant isomorphism V — W.

Definition. A subrepresentation V' c V is a subspace such that z-v € V' for
all zegveV’.

Definition. V is irreducible if it has exactly two subrepresentations, namely 0
and V' (note the 0 representation is not irreducible).

Examples. 1. The trivial representation is irreducible.

2. For sl3(C), the defining representation and adjoint representation are ir-
reducible.

Exercise. Prove this.

Definition. V is called completely reducible if it decomposes as the direct sum
of irreducible representations.

Note: For V a representation, complete reducibility is equivalent to the
condition that for every subrepresentation W c V there is a W' such that
V=Wwew.

Exercise. Prove this equivalence.

Finally, we have the following example

7. If V is a representation and W c V is a subrepresentation then V /W is a
representation of g via (v + W) = zv + W.

3.0.1 Warm Up for Lecture 3

a b
b:{[o c]|a,b,ce(C}

and let V = span {vl = ((1)) , Vo = ((1))} be the definining representation of b.

Let

Then V' is not completely reducible. Suppose that it were. There is a sub-
representation Vi = (vy), since [8 I;:| ((1)) = (g) So, as V is completely
reducible there is a subrepresentation V5 such that V = V; @ Vs. Suppose

04 v=a1vy +agvyeVs.
0 1 ar) _ (a2
0 O|\az) \O

so ap =0, but then v € Vi, a contradiction.



Definition. A representation V of a Lie algebra g is faithful if the map g —
gl(V) is injective.

From now on in this course, all Lie algebras and representations are over C.
Let V be a representation of sla(C), and let

o 3 S A i

We know the following representations already:

dim name action of h
1 trivial 0
. 1 0
2 defining [ 0 - 1]
3 adjoint 0
-2

Definition. For A € C, the A-weight space of V is
W={veV|h-v=Xv}.

Example. The following are vector space sums, not decompositions into irre-
ducible representations:

1. The trivial is Vj.
2. The defining representation is V; @ V_;
3. The adjoint representation Vs = (e), Vo = (h), V.o = (f)
The action of e: Suppose v € V. Then
h-ev=([he]+eh) - v=2e-v+Xe-v=(A+2)e v, s0 eve V.
Exercise. f-veVy_,.

h-fo=([hf]+fh)-v=(=2f+Af) - v=(A=-2)f v,s80 foeVy_
So we have the following picture:

e (&4 (& (&
P N N
V-4 Va2 Va Va2 Vasa
f f f f

Definition. If a nonzero v € V), nKer(e) for some A, then v is called a highest-
weight vector (of weight \).



Example. In the adjoint representation, e is a highest weight vector.

Lemma 4.1. Suppose v € V) is a highest weight vector. Then for allm > 1,
effv=nA-n+1)f""v.
Proof. By induction. Base case:
efv=([ef]+ fe)v=(h+ fe)v=v(+0)=1(A-1+1)f%

Exercise. Finish the proof.

For n > 1, we have
effv=ef(f"v) = ([ef]+ fe) f"v=hf""v+ f(n-1)(A~ (n-1) + 1) f" 2
Since f" v € Vy_ap4o this is
A=2n-1))f" o+ (n-1)A-n+2)f"lo=nA-n+1) "o
which completes the induction, which completes the proof. O
Lemma 4.2. Suppose v € V) is a highest weight vector. Then
W = span{v, fv, f*v,...}
s a subrepresentation of V.
Proof. Tt suffices to show that if w = f™v then:
(i) ewe W
(ii)) hweW
(i) fweW

(iii) is obvious from the definition of W. For (i), n > 1 follows from lemma 4.1,
and n =0 so ew = 0, since v is a highest weight vector. For (ii), f™v € V\_a, so
hw=(A-2n)weW. O

Proposition 4.3. If V is finite dimensional then it contains a highest weight
vector.

Proof. Choose any nonzero eigenvector v for h, which we can do as we are
working over C, etc. Consider

2
v,ev,e v,

The set {€™v | ev # 0} is linearly independent, as the e-action changes the
eigenvalue of v, so as V is finite dimensional there is an n such that e"v # 0,
but eFv = 0 for all k >n. Then e™v is a highest weight vector. O



Lemma 4.4. Suppose V is finite dimensional and v € V) is a highest weight
vector. Then \ € Zsg.

Proof. Any nonzero vectors of the form f™v must be linearly independent, so
there is an n > 0 such that f"v # 0 but f*v =0 for all £ >n. Then by Lemma
4.1,

O=ef"v=(n+1)(A-n)f .

Since f"v is nonzero, n = A. O

Putting this all together, suppose V is of dimension n + 1 and irreducible.
Proposition 4.3 tells us that there is a highest weight vector v € V. Lemma 4.2
tells us that span{v, fv, f?v,---} is a subrepresentation, so {v, fv, f?v, -, fv}
is a basis, as the f'v are all linearly independent. The proof of Lemma 4.4 tells
us that A =n. So we have:

Corollary 4.5. If V is an irreducible representation of slo(C) of dimension
n+ 1 then there is a basis vy, v1,---v, of V such that:

n
n-2
h-v; = (n-2i)y;
-n-2
-n
0
! 0 . fU {’0“1 0<i<n—-1
— vy = o
0 0 =N
1 0
0 n
0 2(n-1) {i(n—i+1)vi1 i>1
. N €-v; = 0 i=0
0 n
0

In particular, there is a unique irreducible representation of dimension n+1 for
all n>0.

Warm Up for Lecture 4: Let V be an (n + 1) dimensional irreducible
representation of slo(C) and let v € V' be a highest weight vector. Then

(ef+fe+;h2)(v):m;+n;v=(n;+n)v.

Notation. Write V(n) for the irreducible representation of sly of dimension
n+1.

Definition. Given a representation V of sly, {\ € C| V) # 0} are the weights of
V.



Today’s goal is:

Theorem 4.6. Every finite dimensional representation of sly is completely re-
ducible.

Note: This along with corollary 4.5 implies that the action of h completely
determines a finite dimensional representation.

Example. Suppose V is a 5-dimensional representation of sly and there is a
v € V such that h-v = 3v. This implies that the weights contain 3,1,-1,-3, so
we must have

V=VO0)PV(3)

We'll need some general facts: if g is an arbritrary Lie algebra and ¢ : g —
gl(V) is a representation of g, and there is some o commuting with p(z) for all
x €g. Then:

Fact 1: Ker(o - ¢ly) is a subrepresentation of V for all ce C

Proof. Exercise 0
Fact 2: If V is irreducible, then o is a scalar.

Proof. There is a ¢ € C such that Ker(o — ¢I) is nonzero so Ker(o —¢l) is a
nonzero subrep, so since V is irreducible, V' = Ker(o - ¢I). O

Definition. Let V be a subrepresentation of sly. Then
1
Q=ef+ fe+ §h2 egl(V)

is called the Casimir element.

Lemma 4.7. If ¢ :sl, — gl(V) is finite dimensional then Q commutes with
p(x) for all x € sly.

Proof. Check that e = Qe, fQ = Qf, hQd = Qh (see Grojnowski’s notes page 10).
. U

Corollary 4.8. If V is an irreducible representation of sla, then Q O V as a
scalar.

Proof. Schur . O
(Warm up tells us Q O V,, by ”—22 +n)

Proof. (of Theorem 4.6) Let ¢ : sly —> gl(V') be a finite dimensional represen-
tation of sl3(C) and suppose W € V' is a suprepresentation. We need to show
thereisa U cV sothat V2WeU.

Case 1: W has codimension 1, so V/W = V(0).

10



Case 1A:

Case 1B:

Case 1C:

W is trivial so dimV = 2 and there is a basis of V' with respect to
which sly acts on V' by [8 S] We want to show V 2 V(0) @ V(0).
Note that
0 = |0 yfy_
[[0 0],[0 0]]—0 Vz,yeC

Since ¢ respects the bracket,
p(h) =[e(e), ¢(f)] =0,

o(e) = 5 Lo, ()] =0,
and

o(f) = 5le(). o(F)] =0.

W 2V (n) is irreducible, (n > 0).

Consider Q € gl(V'). We will show V = V(n) @ Ker2. By Schur, the
fact that W is irreducible, and the fact that Q acts on V /W trivially,
there is a basis for V' such that €2 acts by

Cc

)
O ¥ X X ¥ ¥ %

W is nontrivial, so Ker(2) is nonzero, and it is clear that W nKer(2)
is zero, so V =W @ Ker(Q)
W arbritrary.

By induction on dim V. The base case is case 1A. Let W/ c W be a
nonzero subrepresentation. dim(W/W') < dimV and the codimen-
sion of W /W' in V//W’ is 1 so by induction this implies

VIW = WIW @W" W (+)
for some subspace W' of V and W"” /W' a subprepresentation of
VW'
W' c W" has codimenstion 1 and dim W’ < dim V. Note that W"
is a subrepresentation of V', since W' /W being a representation im-

plies zw € W' ¢ W” for all z € sl;. So, by induction there is a
subrepresentation U € W' such that

W"'=W'eU (x*)

11



Now we claim V = W@ U. We know U has dimension 1, and WnU ¢
W nW"” =W’ since we showed the right hand side of (x) is a direct
sum. So by (x*), as the sum is direct, WnU c W' nU = 0. Since
U has dimension 1 and W codimension 1, we are done by the rank-
nullity theorem.

Case 2: Let W be arbritrary.

Consider Hom(V, W), recalling that (z-¢)(v) =z (o(v)) - ¢(z-v). Let
V = {¢p e Hom(V, W) : | = cIyy some c € C}

and the subspace

W={yeV:¢|w =0}
Note:

- The codimension of W in V is 1.

- Suppose Y|y = clw,x € sly,w € W. Then
(z-9)(w) =z -Y(w) —P(z-w) = z(cw) - c(zw) = 0.

So, V is a subrepresentation of Hom(V, W) and so W is a subrepresentation
of V. By case 1 we may find a one-dimensional subrepresentation U of V
such that V=W e U. Write U = span(g) for g€V, so g |w= cIw for some
nonzero c.

Now claim that as vector spaces, V = W & Ker(g).

W nKer(g) = 0, so by rank-nullity, dimV = dim W + dim(Ker(g)) as
W =1Im(g), so we do have a direct sum of vector spaces.

It remains to show Ker(g) is a subpresentation of V. Let v € Ker(g),
x € sly. Since U is a one-dimensional representation of sly, U is the trivial
representation and so 0= (z-¢)(v) =z -g(v) - g(z-v) so x-gv = g(x-v)
s0 0 = g(x-v) and we are done.

O
Remark. The main ingredients of the proof were:
1. Existence of €.

2. Every one-dimensional representation of sly is the trivial representation.

4 Tensors
Let V, W be finite dimensional vector spaces, with {vq,---vg}, {w1, -, wy, } bases

for V, W respectively.
Recall V@ W has basis {v;®w; [1<i<k, 1<j<m} and

12



1. c(v@w)=cv@w=v®cw for all v e V;we W,ceC.

2. (ug +u2)@w=u; ®w+us ®w for all uy,us e ViweW.

3. v®(21+22)=v®21+v®2 for all v eV, 21,20 € W.

If VW are representations of a Lie algebra g, then so is V@ W with

z-(vew)=(z-v)@w+v® (z-w).
Example. If V,WW are representations of slp, and v € Vy,w € W,
h-(vew)=(A+p)vew.

In particular, the weights of VW are {\+pu : A weight for V, u weight for W}.

Example. The decomposition of V(2) ® V(2)

2 0 -2
2 14 2 0 .
0la o - V@eV(2)zV(H)eV(z)eV(0).
-210 -2 -4

Definition. The nth symmetric power is given by
Sym"(V)=Ve&--@V/M,,
where
M, = span{uy ® - ® Uy, = Ug(1) ® = ® Ug(p) | 0 € Sp,u; € V}.
Example. If n =2, My =span{v®@u-u®v|u,veV}.

Fact: M, is a subrepresentation of V®---® V whenever V is a representation
of g, and so Sym™ (V') is a subrepresentation.

Example. In Sym*(V), v®w = w ® v so Sym*(V') has basis {v; ® v; | i < j}.
Decomposing Sym?(V (2)):
0#e®eeSym*(V(2))
so V(4) is a subrepresentation, so
Sym?(V(2)) = V(4) @ V(0).

Definition. The nth exterior power N"(V) =V ® V ® ---V/N,, where N,, =
span{u ® - ® u,, | u; € VVi,u; = u; for some j}.

Example. For n =2, Ny =span{v®v | v € V}, N, is a subrepresentation of
VeV--®V. The proof for n =2 is:

Note (v+u)® (v+u) € No, vOV+vQu+u®U+u®u € Noy 50 v®u+u®v € No.
So,ifxeg, z(v®@v)=(2v)®v+0v®(zv) € Na.

Notation. The coset of u; ® -+ ® u,, is denoted uy A - A uy,. A basis for A2V
is given by {u; ® v; |1 < j}.

Example. Decomposing, A%V (2) = V(2) with basis {e A f,e Ah,h A f}.

13



5 Semisimple Lie Algebras

Throughout this section g is a semisimple Lie algebra over C.
Definition. A subspace I c g is an ideal of g is [xy] € for all x e g,y € I.
Note that:
1. Any ideal is a subalgebra.
2. If I is an ideal g/I is a Lie algebra under [z + I,y + I] = [xy] + I.

3. I is an ideal if and only if it is a subrepresentation of the adjoint repre-
sentation of g.

Examples. 1. The center of gis Z={zeg|[xy] =0 for all y € g}, which is
an ideal.

2. The derived subalgebra [gg] is the span of {[zy] | =,y € g}, and is an ideal.

Exercise. The derived subalgebra of gl,, is sl,,. This is since trXtrY =
trYtrX and the basis elements of sl, generate one another under the
bracket.

3. If ¢: g —> b is a homomorphism then Ker(¢) is an ideal, since ¢ respects
the bracket. In fact, every ideal arises in this way.

Definition. If [gg] is nonzero and the only ideals of g are 0 and g then g is
simple.

Examples. We'll show sl,, for n > 2, so, for n > 5 and spy; for [ > 1 are all
simple. Note:

1. If g is simple then [gg] = g.

2. If g is simple then every representation of g is either faithful or a direct
sum of trivial representations.
So, g is simple if and only if the adjoint representation is irreducible.

Definition. The Lie algebra g is semisimple if it is the direct sum of simple
ideals, i.e. ideals which are themselves simple when viewed as Lie algebras.

Example. sos 2 sly @ sls.
Non-example. gl, = @ sl,.

Our aim will be to state a more standard definition of a semisimple Lie
algebra and then to show this definition is equivalent.
Definition. The central series g° > g' > g%+ is given by g° = g,¢" = [g,9" ']
That is,

9> [gg] > [o[gg]] >

14



Definition. The derived series g(o) > g(l) o] 9(2) > .-+ is given by 9(0) =9,9=
[g("Dg( D] for each n > 1. That is,

9> [o0] > [[9g][gg]] > -
Note that:
1. g cgn.
2. For all n, (™), g" are ideals.

Exercise. Prove this.

By induction on n. When n = 0 we’re done so let n > 0. Let =,y € g,g"
respectively. Then [zy] € g"~! since g" ! is an ideal, and g" c g"~!. But
g" is {[ay]:wegyeg o {lay:wegyeg]}

Similarly, g = {[zy] : 2,y € "V} and so if y € gV, y = [wz],w,z €
gD so for z € g, [zy] = [z[wz]] = ~[w[zz]] - [2[zw]]. By induction,
[z2] and [zw] are in g" ) so [xy] € g™ by definition.

3. If g is simple, both series look like gog>---.

4. If g is abelian, both series look like g2 050> ---.

Example. Let

3
Il
—
S
S X X ¥
—_——
n
©
3

The central series for 7 is

0 *
{ e

Definition. If g" = 0 for some n then g is called nilpotent.

o ¥ ¥ ¥
——
@]
——
oo x %
—_————
u
——
oSO O ¥
—_——
u

Definition. If g*) = 0 for some n then g is called solvable.

}cg[n.

Example. Let

=

Il
——

oy
¥ % x ¥

Exercise. B is solvable but not nilpotent.
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Abuse notation and write h for the image of h in gl,, under the irreducible
representation of sly of dimension n and analogously for e, both with respect
to the basis for which they take the standard form. Then since h € B, and
[he] = 2e, by induction e € B” for all n and so B is not nilpotent.

To see that B is solvable, note that the diagonal of the bracket of any two
elements of B is identically zero. So, the derived series of B after the zeroth
term is contained in the central series of n and therefore becomes zero after n
steps.

Theorem. (Lie’s Theorem) If g is a solvable subalgebra of gl(V) where V is
a finite dimensional C-vector space then there is a basis for V' such that every
element is upper triangular.

Proof. See Humphreys, Section 4. O

Proposition 6.1. Suppose I,J are ideals of g.
1. If g is solvable, then any subalgebra or quotient of g is solvable.
2. If I is solvable and g/I is also solvable then so is g.
3. If I,J are both solvable then so is I +J.

Proof. 1. Follows immediately from the definition.

2. Choose n such that (g/I)™ =0, so g™ c I. Note g("*™) c 1™ for each
m >0, and since I is solvable we’re done.

3. We have (I + J)/J =2 I/I nJ. The right hand side is solvable by 1. J is
solvable by assumption and (I+J)/J is solvable. So by 2, [ +.J is solvable.
O

Proposition 6.1.3 allows us to define the radical of g.

Definition. The radical of g is the maximal solvable ideal of g, denoted by
Rad(g).

Definition. If ¢ : g — gl(V) is a finite dimensional representation of g the
trace form of V is

(,)vigxg—C
(2, y) — tr(p(x)e(y))-

Exercise. 1. Trace forms are symmetric bilinear forms. It is clear that they
are biilinear forms, and symmetry follows since tr(XY) = tr(YX) and
trace is independent of basis.

2. ([zyl2)v = (zlyz])v.
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Definition. The Killing form K(-,-) is (-,")aq, i.6. K(x,y) =tr(ad(z)ad(y)).

Theorem 6.2. The following are equivalent for a finite dimensional Lie algebra
g:

1. g is semisimple.
2. Rad(g) =0.
8. The Killing form on g is non-degenerate.
Lemma 6.3. Let g be a Lie algebra.
1. If I is an ideal of g then so is [II].
2. Rad(g) =0 if and only if g has no nontrivial abelian ideals.

Proof. For the first part, if z,y € I, and z € g just need to show that [z[zy]] €
[II]. By the Jacobi identity,

[2[zy]] = ~[=[y=]] - [y[z2]]-

For both of the summands on the right, both components of the bracket are in
I since I is an ideal, so the left hand side is in [I1] as required.

For the second part, it is immediate that any abelian ideal is solvable. If I
is solvable, the last nonzero term in the derived series for I is abelian. O

Warm Up for Lecture 7: Define g* = {x ¢ g | K(z,y) = 0OVy € g}.
Claim that g* is an ideal. Let x € g*,y,z € g. We are required to show that
K([zy],z) =0. We know that K ([zy],z) = K(z, [yz]) = 0 since s € g* and we’re
done.

In order to prove Theorem 6.2, we need a few results to start us off. The
key ingredients are:

Lemma 6.4. Let I be an ideal of g and let K; be the Killing form of I. Then
Ki(zy) = K(xy) for all x,yel.

Proof. By multiplying matrices. Choose a basis of I and extend to a basis of g.
Let z,y € I With respect to this basis:

ad(z) = |:61 8] where A = (adz) |;

and similarly for ad(y). K;(z,y) =tr(AB) =tr(adzady) = K(z,y). O

Cartan’s Criterion Suppose g is a subalgebra of gl(V') for V a finite di-
mensional C-space. If (x,y) =0 for all z € g, y € [gg], then g is solvable.

Proof. See Humphrey’s 4.3, uses Jordan decomposition. O
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Corollary 6.5. 1. If g = g* then g is solvable.
2. If g is simple, then g* = 0.
3. g* is solvable for all finite dimensional g.

Proof. 1. Consider the adjoint ad : g — gl(V'). The image ad(g) = g/Z(g).
Z(g) is solvable since it is abelian. Since g = g*, Cartan’s criterion implies
that ad(g) is solvable. So by Proposition 6.1, g is solvable.

2. gl is an ideal so either g* = 0 in which case we’re done or g* = g, but then
g is solvable by (1), which contradicts the fact that g is simple, and has
derived subalgebra identically g.

3. (g*)* = g* by Lemma 6.4, so by (1) g* is solvable.
O

Proof. (of theorem) To see that (2) implies (3), g is a solvable ideal so g* c
Rad(g) =0

To see that (3) implies (2), let A be an abelian ideal of g. We claim that
Acgt. Let x€ A, yeg. Choose a basis for A and extend to g

w@)=[o o] waw-[; ]

so tr(ad(z)ad(y)) =0so A=0.
To see that (2),(3) imply (1), note that if g is simple then we are done and
if not we can choose a minimal nontrivial ideal. Let

gr={veg|K(x,y)=0Vyel}

This is an ideal of g - the proof is the same as in the warm up.

Now, claim that g=1® g;.

To see this, since [ is simple by minimality (and being nonabelian by (2)),
Ing! cI* =0. Now consider the map

~ * res T

r — K(z,-) — Kl;+(z,-).

The kernel is g7, which proves claim 1.
Repeat the argument with g; (choose a minimal ideal of g7). We can do this
because:

Exercise. Any ideal of g; is an ideal of g and so Rad(g;) =0

18



Claim 2: (g7)* =0, since if x € (gy)* then z € g*.
To see that (1) implies (2), write g = @I;, I; simple ideals. Let p; be the
projection onto I;.

Exercise. If J is an ideal of g then p;(J) is an ideal of I;.

If A cgis an abelian ideal of g then p;(A) is an abelian ideal of I; so
p;(A) =0 for all 4, and therefore A = 0. O

Theorem. (Weyl’s Theorem) Any finite dimensional representation of a semisim-
ple Lie algebra is completely reducible.

Proof. Almost the same as for sls, the main ingredient being the second version
of the Casimir element. O

Exercise. Any ideal or quotient of a semisimple Lie algebra is also semisimple.

Now, let ¢ : g — gl(V) be a finite dimensional irreducible representa-
tion. Without loss of generality assume ¢ is faithful, otherwise could work
with g/ Ker(y). By Cartan’s criterion, (-,-)y is non-degenerate. Choose a basis
x1,, Ty of g. Since the trace form is non-degenerate pick dual basis y1, -, Yp.

Let
Qp =3 (i) (y:).

Then Q, commutes with ¢(z) for all z € g (Humphrey’s 6.2). By Schur, Q,, is
a scalar. But tr(,) = X, tr(p(z)¢(y) = dim(g) so Q, = 0.

Warm up for lecture 8: If g is a simple Lie algebra, ¢ : g — gl(V) is a
finite dimensional representation, then ¢((g)) c s[(V'). This is because [g,g] c g
S0

©(9) = »([g8]) = [¢(9), p(g)] c [gl(V),gl(V)] =sl(V).

6 Jordan Decomposition

Recall from linear algebra that if € gl(V') there is a basis of V' such that x is
block diagonal with blocks of the form

Al

1
A

Definition. z is nilpotent if ™ = 0 for some n, and semisimple if if the roots
of its minimal polynomial are distinct (i.e. it is diagonalisable).

Proposition 7.1. If x € gl(V') then:

1. There are unique g, x, in gl(V) with x5 semisimple, x, nilpotent, x =
ZTs+ Ty, and [z, x,] =0.
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2. There are polynomials ps,p, in C[T] such that ps(0) = p,(0) = 0 and
ps(:r:):acs, pn(x):mrr O

Definition. z, is the semisimple part of x, x,, is the nilpotent part.

Suppose g is a finite dimensional Lie algebra, then we have the map

ad: g — gl(g)
so ad(z) has a Jordan decomposition for all x € g.

Lemma 7.2. Suppose g is a subalgebra of gl(V), and x € g. Then adzx =
adzxs +ad x, is the Jordan decomposition of adx in g.

Proof. We know that ad x4 is semisimple, and ad x,, is nilpotent, and [ad zs,ad x,, | =
ad([zs,2,]) = 0 so by uniqueness the Jordan decomposition must be adz =
adzs +adx,. O

Theorem 7.3. Suppose g is semisimple, and a subalgebra of gl(V'), with x € g.
Then xg,xy, € 9.

Proof. Let
N(g)={yeg| [yz]eg Vzeg}.

Then we claim
1. N(g) is a subalgebra of gl(V).
2. g is an ideal of N(g).
3. xs,xn € N(g)..

The first two are clear from the definition of N(g). For the third, for z € g, we
have
[xs,2] =adzs(2) = (ad x)s(2),

and by proposition 7.1 (2), this is in g since (ad z)s is a polynomial in ad z with
no constant term.
Given a subrepresentation W c V' let

gw ={yegl(V) | ywe W YweW and tr(y |w) =0}.

Then gy is a subalgebra of gl(V'), by the warm up for lexture 8, g € g and
Ts,Tn € gy . Now, let

g = N gwnN(g)2g.
weV, g subreps

We now claim g = g’. To see this, g’ is a representation of g via restriction to
the adjoint representation, and g is a subrepresentation of this representation.
By Weyl, g’ = g @ U for some representation U, and it suffices to show U = 0.
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We know that V' = @; V' for irreducible representations V%, and we’ll show that
U acts on each V' by zero. Suppose u € U. Since g is an ideal of g’, if y € g then

[y,u] egnU =0.

So u commutes with everything in g, so by Schur v acts as a scalar on V. u
also has trace 0 by the definition of gy, but u |y has trace 0, so u = 0. O

The upshot: Suppose g is a semisimple finite dimensional Lie algebra.
Then ad : g — gl(g) is injective, so given x € g,
adz = (adz)s + (adx),, (Jordan decomposition)

so (adx)s, (adx), € ad(g) so we can uniquely define the semisimple and nilpo-
tent parts of z to be x4, x, such that

ad(zs) = (adx)s, ad(zy) = (adx),.

Proof. Suppose ¢ : g —> gl(V) is a finite dimensional representation, x € g.
Then

p(x) = p(2s) + ¢(xn)
is the Jordan decomposition of ¢(x) is gl(V'). O

7 A Brief Introduction to Inner Automorphisms

Let V be a finite-dimensional vector space over C.

Definition. If z € gl(V),

oo .1

exp(z) =), %

0

Note that exp(z) is invertible, since we can choose a basis such that z is
upper triangular.

Lemma 8.1. If g is a subalgebra of gi(V') and x € g is nilpotent then
exp(ad x)(y) = exp(a)yeap(x) ™.
O

Corollary 8.2. Ifge gl(V) and z is nilpotent then exp(ad(zx)) is an automor-
phism of g. O

Definition. Let G.4 be the subgroup of the automorphism group of g generated
by {exp(ad(x)) | = is nilpotent} Then G,q is the group of inner automorphisms
of g.

Examples. 1. g=5[,(C), Gaq = PGL,(C).
2. g=50,(C), Gag =S0,(C)/Z.
3. 9=5p9(C), Gaa = Spy(C)/Z.
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Root Space Decomposition

Throughout, g is a finite semisimple Lie algebra over C.

Definition. A subalgebra tc g is toral if
1. tis abelian;
2. adx is semisimple for all x € t.
A maximal toral subalgebra is called a Cartan subalgebra (CSA).
Warning: This is not the standard definition, but is equivalent.

Example. For sl,,,s0,,sp,;, with the bilinear form we chose earlier, the space
of diagonal matrices forms a Cartan subalgebra.

Lemma 9.1. Suppose V is a finite dimension C-space and o1,---,0, are com-
muting semisimple endomorphisms of V. Given A = (A1,-++, A,) € C", define

Vi={veV ] o;(v)=X(v) for all i}.

Then

V=@V
AeCn

Proof. The proof is by induction on n. For the n =1 case, this follows since o
is semisimple, so diagonalisability is that V' has a basis of o1 eigenvectors.
For n > 1, we know by the inductive hypothesis that

V- @ Vu
XeCn-t

for the action of oq,---,0,-1. Since the o; commute, o,(Vy/) = V) for all X" so
decomposing each V). for o, as in the n =1 case, we are done. O

Lemma 9.2. Any g contains a Cartan subalgebra.
Proof sketch: By Engel’s Theorem, we can choose x not nilpotent, and x4

generates a toral subalgebra. Then use Zorn’s Lemma.

Rewriting Lemma 9.1, suppose h ¢ gl(V') with a basis of commuting semisim-
ple o1,---0p, A € C" corresponds to the element of h* given by o; — A;. Then

Vi={veV]|h-v=Xh) v Vhebh}.
In our situation: fix tc g a Cartan subalgebra. Then

9:@9,\

Aet*

where
gx ={zeg|[te] = A(t)x for all ¢ € t}.
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Definition. Let ® = {a € t*\0 | g, # 0}. The elements of ® are the roots of g,
with respect to t. If a € @, g, is a root space, and

g=009® ), 0a

aed

is the root space decomposition or Cartan decomposition of g.

Proposition 9.3. 1. For all a,B € t*, [ga08s] C Gass-
2. If a € @, then if x € g, adx is nilpotent.
3. Ifa+p#0, K(ga,98) =0 for all a, B e t*.

Proof. 1. Let x € go,y € gg, and t € t. We have

[t[zy]] = -[=[yt]] - [y[tz]] = [z[ty]] - a()[yz] = B(t)[zy] + a(t) [zy].

2. follows from (1) and the finite dimensionality of g.

3. If a+ B # 0 then there is a t € t such that (a+ 8)(t) £ 0, so fix such a ¢,
and fix x € go,y € gg. Then

a(O) K (z,y) = K([tz],y) = -K([at],y) = -K (=, [ty]) = -6(t) K (z,y)

so (a+pB)(t)K(z,y) =0, so K(z,y) =0.

Corollary 9.4. 1. K |gyxg, is non-degenerate.
2. Ifae®,-aed.

Proof. Since K is non-degenerate, given a non-zero € g,, there must be a
Y € g_q such that K(z,y) #0. O

Proposition 9.5. gg=t.
Proof. c.f. Humphreys 8.2. O

Corollary 9.6. K |« is non-degenerate.
In particular, the map

t—t*

x— K(x,-)

1s an isomorphism. Let the inverse be A\ — ty, so ty is an element of t defined
by K(tx,x) = A(x) for all x €t.
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Examples. 1. For sly, can take t = ([1 _1]>. Define « € t* by a(h) = 2,
Ja = <e>7g—a = <f)

2. Let g =sls,

h1 = —]_ 5 h2 = ]_
0 -1
and let t = ({h1,ha}). Define a € t* by a(hy) =2,a(hy) =-1. Then

1
Ja = y P-a = 1

Theorem 9.7. If a € @, then

Mqa = ga @ [gom g,a] S B

s a subalgebra of g isomorphic to sly. In particular,

dim(ga) = dim([ga,8-a]) = dim(g-q) = 1.

Stepping back, this means that every semisimple Lie algebra is built out of
slps. To prove this, we’ll need some preparation.

Warm Up for Lecture 10: If ¢ € t satisfies a(t) = 0 for all @ € @, then
t = 0. To see this, if « € ® and z € g, then 0 = a(t)z = [tx], and since a toral
subalgebra is abelian, this holds in all of g, so t € Z(g) = {0}.

Proposition 9.8. ® spans t*.

Proof. If not then there is a nonzero t satisfying a(t) = 0 for all « € ®, which is
false by the warm up. O

Proof. (of Theorem 9.7)

Claim 1: [ga,9-a] is one dimensional.

Proof of Claim 1: Suppose T € gq, Y € g S0 [zy] € t. Let t € t, so

K([zy] 1) = K(x,[yt]) = -K(z, [ty]) = a(t) K (z,y).
So, [zy] = K(2,y)ta € (ta), 50 [ga,0-a] is at most one-dimensional, but

there are z,y such that K(x,y) # 0 by non-degeneracy so it is exactly
one-dimensional. O
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Claim 2: a(ts) #0.

Proof of Claim 2: Since the Killing form is non-degenerate and rescaling
is possible, we may choose z € g,,y € g_o such that K(z,y) =1. Then

[z,y] =ta [ta,z]=a(ta)r  [ta,y] = -a(ta)y

and therefore ({x,y,t,}) is a subalgebra, b, say, of g.
Suppose that a(t,) = 0. Since [h,h] = (¢, ), this implies that h is solvable.

Consider ad : g — gl(g). We know that h embeds to a solvable sub-
algebra, so by Lie’s Theorem there is a basis of gl(g) with respect to
which ad(h) is contained in the set of upper triangular matrices, and
ad(t,) = [adz,ady] is a strictly upper triangular matrix. So ad(t,) is
nilpotent, but by semisimplicity it is semisimple and therefore ad(t,) =0
S0 to € Z(g) =0, a contradiction. O .

2ty

Notation: Given a € ®, write ho = 7572y

that [eq,€-a] = ho. Then note that

e t. Choose e, € go, €—a € §—o such

[hasea] = a(ha)ea =2eq, [haye-a]=-2e_4

and therefore s, := ({€q,ha,€-a}) 2 sly with (eq,ha,e_q) an sly triple.
For the rest of the proof, let

V=t® ) gea-
ceC

Then, via restriction of the adjoint map V is a representation of s, and we may
note that:

1. t=(ho) ® Ker(a).
2. Ker(w) is an s, subrepresentation of V.
3. S84 18 an s, subrepresentation of V.

By Weyl’s theorem, as a representation of s,
V =Ker(a) @ s, ® W (for some complement W).

Claim 8 : W =0.
Proof of Claim 3: It suffices to show that any irreducible representation
of W is zero. Let Wy be a nonzero irreducible representation. Then W)
has a highest weight vector, wgy, and we know:
® W € geo for some ¢ # 0.
o [ha,wo] = nwy some n € Zyg

o [ha,wo] = calhy)wy = 2cwy.
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son = 2c.
Case 1: n is even, so h, acts on Wy by

n
n-2

n-2
n

so 0 is a weight, which is a contradiction since Wy € ¥ .cc 9ca

Case 2: n is odd so h, acts by

n
n-2

n-2
n

and 1 is a weight. If [hq,v] = v then v e€ga so f:= § € ® . Consider
the sg action on V' = t® Y _cca. As an sg representation, V =
Ker(B)®sg® W', with W' an sg subrep. Note that g, ¢ W'. If € g,

[ho,a] = alhs )z = 28(hs)a = 4a

so hg acts on g, with an even weight. So zero is a hg-weight of W,
which is a contradiction, since hg acts by non-zero scalars.

O (Claim 3, Theorem 9.7)

Putting this together, we have that dim(g,) = dim(g-o) = 1. O
Corollary 9.9. : If a,ca € ® for some constant ¢ then c = £1.
Theorem 9.10. Suppose a, 5 € P

1. B(hy) € Z.

2. The space @yez 98+ka 15 an irreducible representation of my.

In particular, the set {8+ ka: k € Z} n® is of the form B —-pa,B - (p -
D, 88 + a,-, B + qa for some p,q € Z. This is called the a-string
through (.

3. Forp,q asin (2), p—q=LF(ha).

4. [gag,@] =0a+8-

Proof. 1. Let V = ®yez 08+ka, and let m, act on V by restriction of the
adjoint representation. Let

q=max{k| S+ ka e P},
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and let v € gg o be nonzero. Then

[eaav] € gB+(q+1)a = 07 [homv] € (U)v

and so v is a highest weight vector of weight (8 + qa)(ha). So by the
representation theory of sls,

B(ha) + qa(ha) € ZZO
s0 B(ha) +2q € Zsg so B(ha) € Z.

. W= {v,e_qv,e?, v,...} is an irreducible subrepresentation of V', and h,
acts on W by

(B +qa)(ha)
(B+(¢-1Da)(ha)

-(8+qa)(ha)

In particular,

q
W = Z 9B8+ka
k=—p

for some p € Zsg. Suppose W' € V is a subrepresentation not equal to W.
Then W' contains a highest weight vector w € g, for some . Then

V(ha) < =(B+qa)(ha) <0,
which contradicts (1).
- =(B+ga)(ha) = (B - pa)(ha)-

. [80:88] C 8a+p 50 if gosp = 0 we are done. If a+f € @, take any nonzero v €
gs. Then if [eq,v] =0, v is a highest weight vector for V', a contradiction.
So [eq,v] is nonzero and therefore spans gos-

wo (P) = .

®, and have

U

Corollary 9.11. For a € ®, define wy : t* — t* by wo(A) = A= A(ho)a. Then

Proof. Let 8 € ®. Let p,q be as in Theorem 9.10. We need to show 5-(hy)a €
B=B(ha)a=p-(p-q)

Since —p < —(p - q) < g, this is in the root string. O
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Stepping back, w,, is reflection over the hyperplane H, := {\ € t* | A(hy) = 0},
and this reflection preserves ®. Our goal now will be to define a root system as
something having all the nice properties of ® and then show that root systems
correspond to semisimple Lie algebras.

Root Systems

Roots in Euclidean Space

Proposition 10.1. Define a bilinear form on t* by (A\,p) = K(tx,t,) for each
A pett.

1. If a,8€®, (a,8) €Q.
2. If ay,--, a1 € @ form a basis of t* then ® is contained in spang{ay, -, a;}.

3. This bilinear form s posititve definite on Q® = spang{a |« € ®}.

Proof. c.f. Grojnowski Proposition 5.7. Note for (1): B(hy) = 225 O

T ()

Let E = spang(®). Then E is a Euclidean vector space.

Abstract Root Systems

Let (E,(-,-)) be a Euclidean space. Given « € E, define &: E — R by

Definition. A finite subset ® c E is a root system if
1. 0¢ @, and @ spans E.
2. If a, 3 € ® then (o) € Z.
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3. Define w, : E— E by
wa(A) = A —a(\)a
Then if a € &, w,(P) = P.
4. If o, ca € @ for ¢ a constant, then ¢ = 1.

Removing (4) gives a "non-reduced” root system, but we will not discuss
these.

Notation. If e E, X € E* then (u,\) = A(1), so for example (o, 5) = 5().

Example. If g is a semisimple Lie algebra, t € g a Cartan subalgebra ® the set
of roots associated to t then ® forms a root system in R®.

Definition. The rank of a root system is dim(E).

Definition. If (®, £), (®, E') are root systems then an isomorphism is a linear
isomorphism of vector spaces p : E — E' with p(®) = ®" and (p(a),p(8)) =
(,a, B) for all a, § € P.

Definition. If v € ® then & is called a coroot.

Examples. Rank 1
A @ ={o,-a}, (o, a) = -2.

Rank 2
Al X A1: q) = {oz,—oz,,@,—ﬁ},(oz,ol) = (ﬁaB) = _27(aa6> = O
\[Jwq
®
B
wp
* * \
- « J
®
-B
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Ag: @ ={a,-a,8,-B,a+8,-a- 8}, (a,a) = (8,8) =1,(, 8) =
(8,a) = -1.

T
B ! a+f wp
I
[ ] | o
S I -
> -
~ I -
~ -
~ | P
~ -
N | P
~ -
~ ) P
~ -
~ ) .
~ -
~ | -
~ -
N
%
—ae o1 [ Yo'
- N
PRETEN
- N
- | <
- ~
- | N
< ~
- | N
- ~
- | ~
- ~
- | ~
- ~
- | ~
|
[ ] | o
-a-pf I - W+
I
l
I
I
I

BY=-1,(B,a)=-3, (8,8) =3, (a,a) = 1.
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Returning to Lie algebras,

1. sly = (h)®ga D g-o with a(h) = 2. Taking h as the generator of the Cartan
subalgebra, have root system corresponding to A;.

2. 5[3, with
1
t= -1 11
-1
has @ = {za, +8, £(a+8)} where a(hy) = 2,a(hs) = -1,8(h1) = -1,8(h2) =
2, then ® = A,.

3. For sp, or so5, ® = Bs.
4. G5 corresponds to a Lie algebra that we are yet to define.

Definition. The Weyl group of a root system (@, F) is the subgroup of GL(FE)
generated by {w, | a € ®}.

Examples. 1. For Ay, W = (Cs.
2. For By, W = Dg.
3. For Ay, W = Dg.
4. For Go,, W = Dq5.
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Lemma 11.1. The Weyl group of ® is isomorphic to a subgroup of S, where
n=||.

Proof. W acts on &, and ¢ spans F. O

Note that if (®1,E1), (P2, F3) are root systems then ($; U @, By @ Es) is
also a root system.

Definition. A root system of this form with both ®; nonempty is called re-
ducible, and otherwise ® is irreducible.

Examples

1. A; x A; is reducible.

2. Ay, As, Bs, G5 are all irreducible.

3. If ® corresponds to a Cartan subalgebra in a semisimple Lie algebra g

then @ is irreducible exactly when g is.

Proof. (Exercise) Let g = g1 @ g2 be reducible, and let t;,ta be Cartan
subalgebras of components. Then t; @ t; is a Cartan subalgebra of g. Let
®4, P, be the roots of g1, gs with respect to t1,t3. For a € ®;, extend « to
t1 @ to via a(ty +t2) = a(t;). Then @ is a root of g with gg = gi, ® 0 so

g=(ttet)e P oa

Oqu)qu)Q

so the root system of g is (®; U P, g =g, @ g2) which is reducible.

Now let ® = &1 U @5 be reducible corresponding to g = F; @ E». Since Fy,
FE5 are vector spaces it suffices to check that they are closed under the
bracket as subspaces of g, and that [e1,ea] =0 for any e; € E;. Any es is
in the span of the root spaces corresponding to ®,. O

Lemma 11.2. If ® is a root system and «, 3 € ®, o # +8 then
(o, B)(B,d) € {0,1,2,3}.
Proof. Recall («, 8) =/(a,@)\/(8, ) cos® where 0 is the angle between « and

B. So
2 x 4(0[76)2 2
a, BB, &) = —————— =4cos“ O e Z.
@0 = G ) 5.5)
Now, cos? 6 € [0,1] so cos? 6 € {0, i, %, %, 1}, but since « # 3, cos®6 # 1. O

Corollary 11.3. If® is a root system and a, 8 are roots then (o, §) € {0, £1, +2, +3}.
Proof. Immediate from the above. O

Exercise. The only rank two systems are, up to isomorphism, those listed
above.
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Proof. Tt is clear that A; is the only rank 1 root system. Since any reducible
root system of rank two must be a direct sum of two rank 1 systems, A; x A7 is
the only reducible rank two system.

For the irreducible rank 2 systems, we must have two basis elements «, 3,
and we may choose a to minimise (o, «), and 3 to minimise (3, &) subject to
B # —a. Since a is of minimal length, (o, 3) < (3, &) and since a, § are linearly
independent these two brackets have product in {0, 1, 2,3} by Lemma 11.2. Also,
Be®so—fed, wehave (a,3) <0, and so (3,d) < 0. The possibilities are then:

(o, 5) {(B,&) Root System
0 0 A1 X A1
-1 -1 Ay
-1 -2 By
-1 -3 Gy

And the root systems are determined up to isomorphism by the pairing
of a and (3, since these determine the position of 3 relative to «, which then
determines wg, and the action of w,, wg on +a, +f generates all of each of the
root systems listed. Moreover, subject to the assumptions on «, 3, no other
roots can be added. O

Corollary 11.4. If ® is an irreducible root system then (o, «) can take at most
two values as o varies over ®.

Proof. (Sketch) If we can have three values, then there are a, § € ® with

(a,0) 2
(5.5) "3
” @.f) 2
(.a) 3

6] (o (5. )

which is a contradiction. Care is required to justify why the product can be
taken to be nonzero. O

Definition. An irreducible ® is called simply laced if (a, ) takes exactly one
value as « varies over .

Exercise. ® is simply laced if and only if («,3) € {0,+1} for all o,/ with
a#£p.

Proof. See Example Sheet. O
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Weyl Chambers, Root Bases

Throughout, (®, E) is a root system, and for a € &, H, = {A € E | (\,& =0} is
the corresponding root hyperplane.

Definition. The connected components of E —,ce He are called Weyl cham-
bers.

Definition. A subset A = {a1,--,a;} € ® is called a root basis if:
1. A forms a basis for FE;
2. a= Zizl c;o; € D 8o ¢; € ZisgVi or ¢; € Zig V1.

Example. In our rank 2 systems, {«, 8} form a root basis.

Definition. If A = {«y,--,q} is a root basis, the a; are called simple roots. If
a = Zizl ;o with ¢; > 0, «v is a positive root, and if ¢; <0 « is a negative root.
®™ is the set of all positive roots, ®~ the set of all negative roots.

Warm Up for Lecture 13: Let W be the Weyl group of (®, E). Then if
A is a root basis, w € W, then w(A) is a root basis.

Proof. We know w € GL(E) so w(A) is a basis for E and a subset of ®. If
aed, a=3caq; for ¢; >0 for all 4 or ¢; <0 for all i, so w(a) = ¥ c;w(a;) with
¢; >0 for all 7 or ¢; <0 for all 4. O

The warm up tells us that W acts on the set of root bases. The goal for now
will be to construct a root basis. Our set up will be as follows.
Choose 7 € E — Uqep Ho and define

&7 = {aed|(7,a)>0} = {acd| (1,a)>0)}.
Set @7 = -®2 (= {a e ®|(y,d)}. Define also
Ay ={aed| atp+p; for any i,z € 7}

Note that these sets only depend on the Weyl chamber of ~.

Theorem 12.1. 1. A, is a root basis.
2. Every root basis is of the form A, for some v € E = Uqep Ha.
Proof of (1): We split into the following claims.

Claim 1: If o, fe Ay, = B¢ A,
+

Suppose a, 8 € . Without loss of generality a — (3 € &7,
Then a = (a— ) + 3, contradicting the definition of A.,.

else take 8 — a.
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Claim 2:

Claim 3:

Claim 4:

If o, € A, and «a # 3 then (o, 3) = 0.
Recall (o, 3)(8,d) € {0,1,2,3}. Suppose (a, 5) > 0. Without loss of gen-

erality it is 1, else consider (8,d). wg(a) = a— (o, )8 = a - € @ since
W preserves ®, which contradicts claim 1.
Let A, ={ay, o} fae <I>:;, o= ZLI c;a; then ¢; € Zsyg.

Suppose there is some « that cannot be written this way. Pick such an «
with (7,@) minimal. a ¢ A, so a =1 + (32 for 81, B2 € ®7. Now,

(av’Y) = (51 +7) + (/827’7)7
(Bis ) < (e, 7),

so (1, B2 can be written as a Zsg-linear combination of the «;, so as the
sum of 31, B2, so too can «, a contradiction.

Note that this implies that every element in @ is a Z¢y combination of
a; and that A, spans F, since ® does.
A, forms a linearly independent set.

Suppose that for some ¢; € R, 22:1 c;a; = 0. Without loss of generality
c;20for1<i<mandc;<0form+1<i<lI, so

m l
”::Zcz‘ai:‘ Z CjQy,
i=1 j=m+1

0
0< (v,0) ==> ¢icj(a;, a;) <0,

%,J

since ¢;¢; <0 and by claim 2, (o, ;) <0, so v =0. So

0= (’)’,’U) = ici(VﬂaiL

so ¢; =0 for 1 <4 <m and similarly for m+1<j <.

For (2), see Humphreys

Corollary 12.2. There is a bijection

{ Weyl chambers} < {root bases}.

Proof. Given a Weyl chamber C', choose v € C' and choose root basis A.. Given
A=A, ~veC for some Weyl chamber C. O

Definition. Given a root basis A, the fundamental Weyl chamber is the Weyl
chamber containing ~.

35



Definition. If A = {ay,--,;} is a root basis and a € ® then the height of « is
Y ¢; where a = Zé:l CiQy;.

Proposition 12.3. If A = {«ay,-,a;} is a root basis and 3 € PT\A, there is an
1 such that B — c; € D.

Proof. Given S, if (8, ;) <0 for all ¢ then Au{fS} is an linearly independent set

by the proof of claim 4 so there is an i such that (8,a;) > 0. Since (8, a;}{«a;, ) €
{0,1,2,3} then (8,q;) =1 or (a;, ) = 1.
S0, Wy, (B)=F-a; € ® or wg(a;)=a; —BePsof—a;ed. O

Corollary 12.4. If B € ®*, then 8 can be written as 8 = a;1 + -+ + ain with oy
- . k
a simple root for each j, and ¥;_; aij a root for all k.

Proof. By induction on height, using Proposition 12.3. O

Note: Corollary 12.4 implies that for g a semisimple Lie algebra with Car-
tan subalgebra t, root system @, then given a root basis ®, g is generated by
{€a,t-a| acd}.

From the warm up, we know that W acts on the set of root bases, and
therefore preserves the set of Weyl chambers.

Proposition 12.5. If A is a root basis and w € W Cyay = w(Ca).
Proof. Uses
Lemma 12.6. Ifwe W and \,pu € E then (A, 1) = (w(\), w(p)).
O

Warm Up for Lecture 14: For ® a root system, A a root basis and W
Weyl group, a € A, w, permutes ®* — A.

Proof. Suppose a = o1 and A = {ay,-,;}. Suppose 8 € &+ — {a}. Then
B =3 c;a; with ¢; non-negative integers.
l
Wa, (B) = B—(B,d1)ar = (c1 = (B,01))oq + Y ciay;.
i=2

Since £ is a positive root, and 5 # ay 80 wq, (B) # —a1, ¢; > 0 for some ¢ > 1
and 8o wq, (B) is a positive root different from «, since 8 # —a, which is what
we wanted to show. O

Theorem 12.7. 1. The Weyl group acts simply transitively on the set of
root bases (and the set of Weyl chambers).

2. Given a root basis A and « € © there is a w € W with w(«) € A. This is
not necessarily unique.

3. If A={ay,,aq} is a root basis then W is generated by {wq, | 1<i<1}.
Proof. See Humphrey’s 10.3. O
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8 Classification of Irreducible Root Systems

Throughout, (P, F) is a root system, A = {aq,--, oy} is a root basis and W is
the Weyl group of ®.

Definition. The Cartan matriz of ® is the [x! matrix (a; ;) with a; ; = (o, d;).

Note that this is independent of choice of root basis since given A’ there is
a we W with w(A) = A’ preserving angle brackets.

Example. For Gs,

ﬁ . .
‘a
a1 = a,as = f we have {(a1,ds) = -1, (ag,a7) = =3 and so we have Cartan
12 -1 . . .
matrix 3 9 ] with uniqueness up to reordering the base.

Proposition 12.8. Suppose (®',E") is a root basis {c}, -, o]} such that
(ag,05) = (a;,d;) for all i, 7.

Then the linear map defined by a; — o induces an isomorphism of root sys-
tems.

Proof. a; — « induces an isomorphism of vector spaces ¢ : E — E'. We
need to show:

L. p(®) = .
2. ((i), ¥ (B)) = {a, B) for all a, B € P.

Consider the action of W.

Y(wa, (o)) = Y(0y = (ay, di)y)

= war (¥(5))-

So, the Weyl group of ®, ®’ are isomorphic since both are generated by simple
reflections, and ¥ (w(«a)) = w(¢(«)) for each « € ® under this identification.
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1. Given « € ® there is w € W with w(a) € A. ¥ (w(a)) € A’ sow(y(a)) € A’
so 9(a) € ®'. For the other containment do the same with .

2. Given «, 8 € ® choose w € W with w(f) € A. Write w(«) = ¥ ¢;a). Then

(@, B) =(w(a),w(B))

01',(0%75)
ci(th(ai), ¥ (w(B)))
(W (), w(®(B)))-

™™

Definition. The Dynkin diagram of ® has:
1. vertices <> A
2. The ith and jth vertices connected by («;, d;){c;,d;) edges.
3. If a multiple edge occurs, an arrow points to the shorter root.

Examples. For ranks 1 and 2 we have the following.

Type A;: O Type By: O——0
Type A1 X Ali O O
Type Ay: O—CO Type Gy: O==0

Note that the maximal number of edges between any pair of vertices is 3,
and @ is simply laced if and only if the Dynkin diagram has no multiple edges.

Exercise. ® is irreducible if and only if the Dynkin diagram is simply con-
nected.

Theorem 12.9. If ® is irreducible, then its Dynkin diagram is one of either a
diagram associated to the classical root systems:

A O—0O— 0
B;: O—0O— -0=0

Cp: O—O—-O0==0
O—O— @<z
Dl.‘
or it is one of the exceptional root systems:
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E6 N

E7 N

O——(OC—=~0
Es.' l

Fy: O—CO——0—=~0
Gqy: =0
Proof. See Humphreys 11.4. U

@,
@,
O
O

Theorem 12.10. For every Dynkin diagram D listed, there is a simple Lie
algebra g with Cartan subalgebra t, roots ® corresponding to t such that the
Dynkin diagram of ® is given by D.

Proof. (Sketch) For Aj, let e; be the ith standard basis vector for R*!. Let
®={e;—e;| i#j} cR*. & spans an r-dimensional subspace of R"*!, call it
E. Then ® is a root system in FE with root basis given by {e; —e;+1 | 1<i <}
and
-1 4,7 differ by 1
<ai, OZj) = 2 7 :j
0  otherwise.

The corresponding Dynkin diagram is

O—O—-0

g (&%) (&%)

so ® is type A;. Now, w,, flips the ith and (i + 1)th co-ordinate, so W = Sj,1.
*

The corresponding Lie algebra is sl;,; with Cartan subalgebra and

3]
o =t; —tis1-
tiv1
For the classical root systems, for e; basis of R! and t diagonal subalgebra
we get

Type | PcR! | Aecd | w | g
Bl {iei,ieiiej,i%j} {e,;—e,;+1 ‘ ISiSZ}U{el} SZKCé §09274+1
& {i2ei,ieiiej,i%j} {ei—e“l | 13i£l}u{2el} SZKCé 5Py
D, {:tei + ej,i %]} {ei — €41 | 1<i< l} U {el_l + el} S x é_l 509;
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Weyl group for B;: S; acts on co-ordinates, and each C5 acts as a sign change
on each co-ordinate.

e (G5 - know root system.
o FyC R4, P = {iei,iei +ej, %(el +eg +e3 +E4)i }é]}

e FEg, Fr, Eg, see Grojowski’s notes section 6.

Eg c R8, | @ |= 240.
Let

8
We = H Wey,
i=1

called a cozeter element of W. The order of w. is 30 and there is a plane of
R® on which it acts by rotation. The picture below shows projection of roots to
that plane. The circles are the orbits under the group generated by w,.

In general, to look up root systems, use the spherical explorer.

For computations, it is best to know things in terms of simple roots.

The exceptional Lie algebras are written as go, 4, ¢, ¢7, ¢g. g2 is the algebra
of derivations of the octonians O, where a derivation is a linear map §,0(ab) =
0(a)b + ad(b). O is 8-dimensional. It has a one-dimensional center on which
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go acts trivially. We can get a representation go — so7, the lowest dimensional
nontrivial representation (see Humphrey’s 19.3). Others can be constructed, see
Fulton Harris 22.4.

Note that given a root system @ there is a natural construction of a Lie
algebra with that root system.

To summarise, so far we have

{g simple, t CSA} - {irreducible root systems ®} < {connected Dynkin diagrams}.

Next,

1. We'll show the root system corresponding to g is independent of choice of
Cartan subalgebra.

2. We'll show two Lie algebras with the same root system are isomorphic.

Isomorphism and Conjugacy

Throughout, g is a semisimple Lie algebra, t a Cartan subalgebra of g, ® root
system corresponding to t and A € ® a root basis.

Proposition 13.1. Ift' is another Cartan subalgebra of g then there is an inner
automorphism ¢ € Gaq with ¥(t) =t'.

Proof. see Humphreys 16.4 O

Definition. The rank of g is the dimension of a Cartan subalgebra, which is
independent of choice of Cartan subalgebra by Proposition 14.1.

Corollary 13.2. Ift' is a Cartan subalgebra of g with root system ® then ®,d’
are isomorphic.

Proof. Take 1 as in Proposition 14.1. Suppose t €t, a € ®, e, € go. Then
[¥(t),v(ea)] = v([t,ea]) = ¥(a(t)ea) = a(t)((ea)).

Now, (e, ) spans a root space for t' so @ = {a o™ | ae®}. O
Theorem 13.3. If g’ is a semisimple Lie algebra with root system ® then gz g'.

Proof. Follows from the theory of finite structure constants (see Carter, Lie
algebras of Finite and Affine Type, section 7).

The idea is to choose a basis h,, of t and choose e, in each root space so
that for each o, [eq,e_q] = ho. This gives a basis of the Lie algebra. Then:

Nogearg a+Be®@
[hOéi7h’04j] =0 [hawea] = a(ha,;) [emeﬁ] =1 ha B=-a
0 a+B¢du{0}

where N,g are the structure constants. O
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Warm Up for Lecture 16: Let g = so5 «, simple roots for the root
system of g, ®. Recall that mqy = go ® ([gas 9-a]) ® §-a 2 slo. Decompose the
adjoint representation of g under the action of mq, mg.

The following diagram has a dot for each root space, and the circle around
0 notates that t = gg his dimension 2.

S8 a+ 20+ f3
€g
° ® [ Yol

Suppose e, € go- Then e, - gy = grsy for all v € @, so each a-root string
corresponds to an irreducible subrepresentation (m,) of g.

glm.=V(2)eV(2)eV(2)eV(0),

glm=V(2)eV(1)eV(1)eV(0)e V(0)®V(0).

Weights

Let (®, F) be a root system and fix a root basis A = {ay,--,aq}.
Definition. The root lattice Z® is {Y peqp Cat | o € Z} € E. The weight lattice
X is

X ={NeE,(\ a)eZ for all a e D},

and the elements of the weight lattice are the weights.
Note that
1. Z® c X.
2. If A e X so is w(\) for all w e W, since (X, &) = (w()), w(a)).

Example. For A, the root lattice Z® is shown below the line, and X\Z®
is shown above.

3a
2
1

—2a 0 « 2

()
(Nl
ol
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Lemma 14.1. X ={Ae E|(\, &)} € Z for all a € }.
Proof. See Example Sheet. O

Definition. For 1 <i <, define w; € E by (w;, d;) = 0;;, with {w;} the funda-
mental weights with respect to A.

Then, Lemma 15.1 implies that X = {3 c;w; | ¢; € Z}.
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Examples. 1. For As, w; is the green point below, and wsy the red dot.

[ Ye3i

Here, [X : Z®] =3

2. For By, again wy is shown in green and wy in red, and [X : Z®] = 2.

, ( vd2> =1
7/
7/
,
~ v’
I‘Ioé1 ('7011> 20// .
! 7 , Heg, :{,a2)=0
7/ 7/
| , | ,
| . | 4
, ,
1, | ,
. o | . ;
0 e L H,, :{(,a2)=0
s I [
d I [
. l s
d l /Q
. I s
e | 4 |
. ,
, I |
s 4 |
° [} ‘ °
e 2 I aq
4 7 l
, ,
7 7 | 1
s 4 | |
’ ’ I I
,
’ | |
e I I
, | |
d I I
[ ] [} | [ ]
e ] |
, | |
’ | |
d I I
7 | |
< 7d1) =1
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3. For GG, again, wy is in green, wo in red, and now X = Z®.

I{Ol1 : <~,021) =0
. ,
| S
| s
I /1
| / |
| // |
| K | H,,:{,d2)=0
1, l
o w ,
71 I ,
/1 I ;
/o | ’
/’ | | /
, I I /
, I [
/ I \/’
/ I I,
a2e . : /CP °
/ I /1
/ I /o
4 /
/ | , l
/ | |
/ l ,/ l
/ (I I
)/ 1/ |
. s l °
,/ S I
/ S I
/ / | |
/’ / I I
, / I I
/ I I
// /’ | |
(] [ ] : .‘ [
<aO‘2):1 )/ I I
/ I I
/ | |
/’ l l
, I I
/ ! !
/ | |
/ ® |
] I
| |
I I
I I
I I
l l
I I
I I
! ‘<,0[1>:1

Definition. X € X is dominant if (A, &) >0 for all o € d*.
This is equivalent to:
e ) is in the closure of the fundamental Weyl chamber with respect to A.
o \= Ziﬂ c;w; with all ¢; € Zsg.

From now on, g is semisimple with root system ® and Cartan subalgebra t.
Choose e, € go for each a € ® such that [en,e_o] = ho and @ : g — gl(V') a
finite dimensional representation.

Lemma 14.2. V =@+ V) where Vi ={veV | t-v=A(t)v Vtet}.

Proof. This follows directly from Lemma 9.1, where the commuting semisimple
endomorphisms are a basis of t. O
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Proposition 14.3. 1. IfveV, then ey v e Vyig.
2. If VAx#0 then A e X, i.e. A(hy) €Z for all .
8. dim V) =dim Vi, for allwe W.

Proof. 1. Fix t et. Then

t-eqv=([t,eq] +eq-t)v=a(t)eqa(v) + e A(t)v = (a+ N)(t)eqv.

2. Consider V |,,,. We know h,, acts by integer weights, so A(h) € Z.

3. It suffices to assume w = w,, for some « € ®. Consider

Vim.= P V7 for V7 mg—irreducible representations

Since the h,—weight spaces of V7 are one dimensional we can choose a

basis vy, -, v, for Vy with each v; in a distinct V7.

It suffices to prove that given v; € V7 there is an x € mq, with z-v; € Vo a-
We have wq (\) = A= (), &)o. We know that {eF v, efv; | ke Zso} spans

V7.

€_q e_q €_q eq eq €q
e e e

° ° ° ° ° ° °
A -3« A -2« A—« A A+« A+ 2 A+ 3«

Let M = max{k | efv; # 0}, m = max{k | e*_ v; # 0}. It suffices to show

-m < —(A\, &) < M. But
A+ Ma)(hy) = —(A-ma)(ha)

80 AM(hy) =m — M, and since A(hy) = (A, &) we are done.

Definition. v e V is a highest weight vector if
e v#0.
e v eV, for some \.

o e,(v) =0 for all &€ d*.

Example. On the example sheet, you show there is a root g of maximal height
with representationsect to A. Any nonzero v € g, is a highest weight vector

with respect to the adjoint representation.
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Warm up for Lecture 17: g = sl3, t a Cartan subalgebra with basis
1 0
oy = -1 JPay = 1 . Let V be the defining representation of g
0 -1
with standard basis {e1, ez, e3}. We would like \; € t* such that V = @V,,, and
a basis for each V.

ha, -e1=e1; ha,-e2=-e2; hq, -e3=0.
hay-€e1=0; ha,-ex=e2; hq,-e3=-e3,
so let A1(hay) =1,A1(hay) =0. Then Vy, = (e1).
Let A2(ha,) = -1, 2(hq,) =1, then V), = (e2).
Let A3(ha,) =0,23(ha,) = -1, then V), = (e3).
Note: A1 = wi, A2 = —w1 + wa, A3 = —wsy in the weight diagram for As, and
ey is a highest weight vector, since e, - vy € Vi, and w1 + a1, wy + @ are not
weights for V.

Lemma 14.4. 1. V has a highest weight vector.
2. If veVy is a highest weight vector then \ is a dominant weight.

Proof. 1. Choose any nonzero vy € V) (any A). If vg is a highest weight vector
then done, otherwise choose « € ®* such that ejvg # 0. Let k1 = max{k |
e}gévo # 0}, and let vy = e’(il V9 € Vaik,o- Repeat this argument, replacing
vo by v1. This process must end, since V' is finite dimensional and each v;
is in a distinct weight space, as we always add on a positive root.

2. For a € &%, we need to show that (, A, &) € Zso. Consider my, = (eq, ha,€-a
actingon V. e, -v =0 hgy-v=A(hy)v so v is a highest weight vector for
any m, 2 sly acting on V', and hence A(hy) € Zso.

O

Our aim for now is to show that there is a correspondence between finite
dimensional irreducible representations of g and dominant weights.

Universal Enveloping Algebras

Our motivation for the next section is the following: if V' is a representation of
g, v €V then ---eqegeyeq - v is not necessarily in V/, but it will be in the algebra
we are about to define.

Definition. Suppose V is a vector space over k. The tensor algebra of V is

'T(Vv):]f@‘/@(‘/v®‘/v)GB(V(g)V(g)V)@,,,:@‘/(Xm7

n>0

with associated product given on generators by

V@ @Ug UL ® Uy, =V @+ @V ® UL ® Uy, € yek+m)
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The symmetric algebra
Sym(V) = T(V)/I
where I is the two-sided ideal generated by {x @ y-y® x| z,yeV}.
Note that:
o Sym(V) = @20 Sym" (V).
e We can identify Sym (V') with k[V'], the algebra of polynomials on V.
e 7(V) and Sym(V') are graded.
Definition. If g is a Lie algebra, the universal enveloping algebra of g is
U(g) =T(g)/;
where J is the two-sided ideal generated by {x @ y—y® 2 - [z,y] | x,y € g}.
Note that:
e We often write z ® y as zy.
e If V is a representation of g then V is a U(g)-module via
T1® @ Ly -V =T1 Ty,

This is well-defined since (z ® y —y ® x)v = (xy — yx)v = [zy]v.

e Recall that if V is a finite dimensional representation of sl, we defined
Q=cf+ fe+ %hQ e gl(V). Q is naturally an element of ¢(g) independent

of V.

e In general, if g is semisimple with basis {z1,---z,} let {y1,--,yn} be the
dual basis with respect to the Killing form. Then Q = 37", z;y; € U(g) is

called a Casimir element (version 3). In fact, Q € Z(U(g)).

e U(g) is not graded, e.g. g® g is not closed under addition, but it does

have a filtration. Let

n .
U, = image of @ ¢®" in U(g)
i=0

Then U, Uy, € U,ym-
Exercise. If z € U,,y € U, then xy —yx € Up,yn_1-
Let x = ¥y Naheal, y = S5y ]y, so

ay—yx =y N (@l yd, =yl gl atan),
0]

48



so it suffices to show X1 Zny1-*Ym — Y1 YmT1 " Tn € Unan-1 for x;,y; € g.

Now, T1-Tny1-Ym — Y1 YmT1 Ty can be written

T1 - TplY1Ym — T2 TnlY1 YmT1
+tT2Tp¥Y1 - YmT1 — T3 " TpY1 " YmT1X2

4.

+’Iny1...ym$1...l‘n_1 — yl...ymxl...xn.

So, it suffices to show we can pull an element of g from the front to the
end of the string and get a difference in U,,;1,-1, and then apply this to
T1,X2,, Ty in turn to show that each line above is in U, 4,,_1. For x1, we
have

Ty TpY1Ym — T2 YmT1 = [T1, T2] T3 Tn Y1 Ym
+aalwr, @]y
+2203[ 21, T4 Ym
o
+ T Ym—2[T1, Ym-1]Ym
+ o Ym-1[21, Y ]

where each term is in U,,4+,-1 since g is closed under the Lie bracket, and
similarly for xs,---, ;.

Definition. The associated graded algebra is
(@) = Uy o (@ U U1 ).
n>1

Theorem. (Poincare-Birkhoff-Witt) There is an algebra isomorphism Sym(g) =
gr(U).

Proof. (Sketch) Defining a map g — U,, — U,,/U,-1 gives a map from the
tensor algebra to the associated graded algebra, which by the exercise above
factors through the symmetric algebra Sym(g).

T(g) — gr(U)
N
Sym(g)

Showing this map is surjective is straightforward, injective is harder. For a
proof, see Humphrey’s 17.4. O

Corollary 15.1. If {1,...,z,} is a basis of g then {z'-aln | ki€ Zso} is a
basis for U(g).
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Proof. A basis for Sym(g) gives a basis for gr(U) which gives a basis for U(g).
O

Note that this implies that g injects into U(g).

Lemma 15.2. IfV is a representation of g and v € V' then the minimal sub-
representation of V' containing v is

U(g)v = {uv | uel(g)}.
Proof. 1t is straightforward to check that /(g) contains:
e the elements x---z;v for all z; € g,
e all scalar multiples of the above, and

e sums of the above.

Warm up for lecture 18: Let V be a C-vector space with basis {vg, v1, -, }
and define an action of sly ib V' by

evg=0; h-vg=0; f-v;=0v1 Vi

We wish to show that vy, v, are highest weight vectors for the avtion of sls.
So, require e-v; =0 for j =0,1. Done for j =0. For j =1,

e-vy=ef-vg=([ef]+ fe)vy =[ef]vo = hvg = 0.

We also need (vg), (v1) to contain their own images under h. We’re done for vy,
and for vy,

h- v = h- fU() = ([hf] + fh)’U() = [hf]i/o = —2f1}0 = —2’U1

so v € V_g is a highest weight vector.
Note:

e ({vy,v9,-+}) = W is a subrepresentation of V' with V /W = V(0).

e In general, if V(") is a vector space with basis {vg,v1, -} with sly action
given by
e-vg=0, h-vo=nvy, [-v;=01,

then v,11 is a highest weight vector and W, = ({vp41, Un+2---}) has

V) W, =V (n).
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Highest Weight Modules

Throughout, g is semisimple, t is a Cartan subalgebra, ® is roots of g with
respect to g and A = {aq,---,;} is a root basis.

Recall that if V' is a representation of g, V) = {v € V : tv = A(t)vVt € t*}.
Note:

e This definition makes sense even if V is infinite dimensional.

e The definition of highest-weight vector also makes sense if V is infinite
dimensional.

o If e, € g, is non-zero then e, - Vy € Vi,q (even if V is infinite dimensional).

Definition. A representation V' of g is called a highest-weight module if V'
contains a highest weight vector v such that V =U(g)v.

Examples. 1. Any finite dimensional irreducible representation V of g is
a highest weight module, since V' contains a highest weight vector by
Lemma 15.4, and Lemma 16.2 implies that U(g) is a subrepresentation,
so by Weyl’s Theorem is all of g.

2. The representation of sly from the warm up: wg highest weight vector,
v; = fMvo so V =U(g)vo.

Note:
e Not every highest weight module is irreducible.

e If V is an infinite dimensional highest weight module, v € V) a highest
weight vector then A is not necessarily dominant.

Notation: " =Y jcap+ §a, 1 = Daed-a SO g=n" @ td N

Example. With the usual root basis for sl,,, n* is the strictly upper triangular
matrices.

Lemma 16.1. Suppose V is a highest weight module with highest weight vector
v such that V =U(g)v. Then V =U(n")v.

Proof. Choose a basis {z1,--xn} of n7, {t1,,t;} of t and {y1,---y,} of n*.
Then U(g) = (ah*--aknt™ oty ymy) but y; - v = 0 for all i, and t; - v € (v)
so U(g)v=U(n")v. O

Proposition 16.2. Let V be a highest weight module with highest weight vector
vy € Vi such that V =U(g)vs. Then:

1.V =®epny Vi where Dy = {\ =Xt ko | ki € Zso}.
2. Any submodule of V is a direct sum of weight spaces V,,.

3. Dim(Vy) =1 and any other V, is finite dimensional.
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4.V is irreducible if and only if every highest weight vector lies in V).
5.V contains a maximal proper subrepresentation.

Proof. 1.V =U(n" )ux = ({e-p,e_p, e, vx | Bi € T,k € Zyo}), with the
generators in VA_Z;_CZI B

2. Exercise.

3. Follows form 1, plus the fact that given p there is only a finite number of
ways to write u as A — Z§=1 B; for 3; € ®*.

4. Now suppose that V has a highest weight vector v, € V,, with u # X\. Then
U(g)v, is a subrepresentation and vy ¢ U(g)v,. This is since weights
for U(g)v, are of the form pu - ¥ ko so U(g)v, is a nontrivial proper
subrepresentation.

Suppose V is reducible with nontrivial proper subrepresentation U. By
(2), U is a direct sum of weight spaces V,,. Choose p to be A= p— Y k;oy
such that V,, c U and Y k; is minimal. Let v, € V}, be nonzero, a € ®* and
€q € 8- Then

€a Uy €VyanU=0.

by choice of U. So v,, is a highest weight vector for V.

5. Take the sum of all the proper subrepresentations, call it V. vy ¢ V so
V+V.
O

Warm Up for Lecture 19: If &, € A and ) is a dominant weight, then
A -« is a dominant weight. In particular, (A—a, A—a) < (A, A). This is because

A=, —a)=(\AN) = (o, A) = (A —a,a) = (A, X) — (something positive).

Definition. If V is a highest weight vector with v € V) and V = U(g)v, v a
highest weight vector, say that V' is of highest weight .

Fix a basis for g of the form {hq,,€q, | 1 <@ <1, € @} such that ey € go,

[eas€-a] = ha.
Definition. Given A € t*, the Verma module M()\) is
M(A) =U(g)/ Ky
where K is the left ideal generated by {eq, ha, = A(ha;) | 1<i<,a e ®}.
Proposition 16.3. 1. M(X) is a highest weight module of highest weight .

2. M()\) is universal in the sense that if my € M(\)x is a highest weight
vector and V' is a highest weight module of highest weight \ with highest
weight vector vy € V) then there is a unique g-equivariant linear map
M(N\) — V with my — vy.
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Proof. 1. Let my =1+ K, € M()\). Then

hai(m)\) = hai + K)\ = )\(hai)m)\.

If o € ®* then
ea~m>\:ea+K)\:K>\:06M()\)7

so my is a highest weight vector of highest weight A. It is clear that
U(g)my = M(N) so any other highest weight vector is a scalar multiple of
this one (by Proposition 17.2).

2. Note that {e_g,, -e_g, -mxr | B; € ®* k€ Zyo} is a basis for M(X). Define
@: M(A) — V by p(e_g,,e_g, -mxr) = e_g,,e_g, -vx. Can check that
© is g-equivariant.

Exercise. Check: if o € ®*, p(eqe_p,--e_g,mxr) = eqe_p, €5, vx (by
induction on k, using bracket).

O

Proposition 16.4. Given \ € t*, there is a unique irreducible highest weight
module with highest weight X\, called V().

Proof. By Proposition 17.2, M(\) has a unique maximal proper submodule I.
Then M (\)/I is irreducible, and uniqueness follows form the universal property.
O

Example. In warm up for lecture 18, V = M (0),I = (,{v1,v2,---}) and M (0)/I =
V(0) the trivial representation of sl,.

Proposition 16.5. V(1)) is finite dimensional if and only if \ is a dominant
weight.

Proof. If V(A) is finite dimensional then use Lemma 15.4 (ii) by acting by the
root slys.

Now suppose that A is a dominant weight. We proceed by a series of reduc-
tions:

1. Let II(A) = {p: V(X), # 0}. It suffices to show that II(X) is finite, by
Proposition 17.2 (3).

2. Tt suffices to show that dim(V'(\),) = dim(V (A)y,) for all elements w of
the Weyl group, since there are only finitely many dominant weights in
II(A) and any weight is conjugate under the Weyl group to a dominant
weight.

3. Tt suffices to show (2) for the simple reflections.
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4. Tt suffices to show that for fixed p € II(N), a; € A,
V(M) ¢ finite dimensional m,, subrepresentation of V/(\),

by the same logic as Proposition 15.3.

Fix such a u, o;.

Claim: There is an M > 0 such that V() ina, =0 for all n > M.
Proof of Claim: We know p =X — 3 ko, with k; € Zyo. Take M = k;.

Now, we know V/(A), € @n<m V(A) i4na, , Which a priori is a representation
of mg, but isn’t finite dimensional.

It’s enough to show that given v € V(X), there is an n > 0 such that
e”,,v =0 Take v nonzero in V(A),. We know

V=E€-8C_py€-g, Ux,
where vy € V(). for some B; € ®* k€ Zyg.
Now we proceed by induction on k: for k =0, v = v\ we have
haj -v = X ha,)v.
Recall Lemma 4.1 says that for all n > 1

ea;e”q,0n = n(A(ha,) -1+ ety

Let N = A(hq,)+1 2 1. Then we claim eN ,0x Is a highest weight vector for

V(X) if it is nonzero. Take a € @7, e, eN JUx € V(A)A-Naj+a SO e, Jua s

a highest weight vector in V(A)A-na; # V()\))\, which is a contradlctlon
N o, _
so e’y v; = 0.
The induction step follows from
Exercise. If o, 5 € ® then
A
€nes = z Ci€Briate

where the ¢; are constants and A = max{k: S+ ka € ®}.

O

We’ve just shown that there is a bijection between dominant weights A and
finite dimensional irreducible representations of g V().
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Weights and Characters

Throughout this section, g is a semisimple Lie algebra, t a Cartan subalgebra,
and A = {ay, -, a;} € ® is a choice of root basis inside the set of roots, X is the
weight lattice, and W is the Weyl group.

Warm up for Lecture 20: Let p = %Z,},eqyr ~. For Ay, Ay, By we compute
(p,a) for all a e A. For Ay, By with A = (a1, a2),p = “5%2 = wy +ws.

o Aj: {—a,a}7p= %, <P»d> =L
o Ay (p,a1) = (w1 +wa,dy) =1.
e By: (ay,p)=1.

Claim: p = Zﬁﬂ Wj.
Proof: Tt suffices to show that (p,d;) =1 for all o;; € A. We have

waj(p) =p- <P,dj)aj,

and also

1 1
w(kj(p):waj(i( Z Oé)+50éj),
aed"\{ay)

and w,, permutes ®*\{a;} so this is

1 ( 5 ) 1
- al-zaj=p-a,.
2 aed*\{a;} 2

So, comparing the two expressions, we obtain (p, ;) =1. O
Recall

I(A) = {p] V(Mu # 0}

Our goals for this section will be to answer the following questions:
1. What is TI(\)?
2. What is dim(V(A))?

Definition. Define a partial ordering < on X by
!
<A <= N—p=Y ki, kieZsyVi
i=1

Note that:

o TN c{u:pu<A}
e To find TI()\), it’s enough to find the dominant weights in II(A).

Proposition 17.1. Suppose A\, p are both dominant weights, then

well(N) < pu<A
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Proof. Suppose p < A. We know that g =X -3 cp+ koo for some k, € Zsg, and
we’ll proceed by induction on Y k.

Base case: Y.k, =0 (done).

Warm up case: Suppose =\ -« for o€ ®*. Then

(@)= (\ &) -2>0

50 (A, &) > 2. Take vy € V), to be nonzero. Since h,, - vy = nvy for some n > 2 we

know that e_qvy # 0 by sly theory (it’s in V(A)a—a = V(X),). Suppose we know

the claim is true for .k, =n —1 and suppose Y ko =n,80 =A== 1 = — .
We now split into cases:

Case 1: (&,Bj) < 0 for some 14,j with i # j, without loss of generality ¢ < j. This
implies ; + 3, is a positive root (Weyl group + sum of positive roots is
positive) so

n -1 7j-1 n—1
Y Be=2 8+ > Be+(Bi+B5) =
k=1 k=1 k=i+1 k=1
B k<i-1
. _ 6k+1 i<k <j +
with v = Broo i<k and so y)k € ®* for all k£ and by the

51' + Bj k=n-1
inductive hypothesis we are done.
Case 2: (ﬂi,gj) >0 for all ¢, with i 4 j.
In this case,
Claim: A-Y;_; 5; €eII(\) forall 1 <r <n.

We'll prove the claim by induction on r. If r =1,

3

(B:iB1)

2

0< <)\—i5i751> =(\ 1) -2
i1

g

The leftmost term is positive by assumption, so (A, 51) > 2, so considering
the action of mg, so A — 1 € II(A).

For the induction step, the same logic implies that
(A= suml_ B, B 2 0
and the action by mg_ so A - Y7, 3; € II(N). O

Warm Up for Lecture 21: Let {1, as} be root basis of G with «; short.
We wish to calculate IT(2w ).
wy has
(wi,dz2) =0,{wi,d1) =1
and the dominant weights in I1(2w;) are exactly the dominant p with p < 2w,
by Proposition 18.1.
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Q9 e

2&)1 = 2(042 + 2041) = 20[2 + 40él.

wa = 3ay + 209 80 Wy < 2wy, but we +wy £ 2wy. So the dominant weights in
I1(2w;) are {w1,2wy,ws,0}. The Weyl conjugates of wy are the short roots, and
of the Weyl conjugates of wy are all the long roots. So,

II(2w;) = { short roots } u{ 2(short roots)} u { long roots }
= O U {£2wy, 27, £2(aq + a2),0}

Definition. Let Z[X] be the free Z-module with basis {e* | p € X} with
multiplication efe* = eM*, commutative ring (extending linearly) with identity
0

e’ =1.

Definition. Let V be a finite dimensional representation of g. The formal
character of V is
ch(V)= > dim(V,)e" e Z[X]
peX

(note that the sum is finite).

Recall form the example sheets that [(w) is the minimal n such that w can
be written as a product of n simple reflections.

Definition. The sign of w, sn(w) = (-=1)"*),
Example. For g =sl,,, sn(w) = sgn(w) € S, as W = S,,.
Theorem. (Weyl Character Formula) If A\ is a dominant weight, and p =
3% a=Y7, w;
2 Liaedt j=1%7>
Twew sn(w)e
ef Hae@* (1 - eia)
Proof. c.f. Grojnowski Chapter 10. O

ch(V(A)) =

Corollary. (Weyl Denominator Formula)

e [T(A-e)= > sn(w)e™

aed+ weW

Proof. ¢h(V(0)) =1, so plug A =0 into the character formula. O
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Corollary. (Weyl Dimension Formula) If A is a dominant weight then
Hae@* <)‘ +p d)
na€<1>+ <p7 d)

Proof. By definition, ch(V (X)) = ¥ ,ex dim(V},)e/. We'd like to substitute " =
1 into the character formula for any u, but could get %.
Suppose p € X, p e Z[X]. Define f,(p) : Ryo — R by

Fu(eM)(t) = N

dim(V(\)) =

and extending linearly.
Then f, is multiplicative and f,(p) is a continuous differentiable function
on R.o. Apply to the denominator formula so for all pe X, t € Ry,

+=(ps1) H (1_,5(&-,#)) - Z Sn(w)t*(pywa)
aedt weW

And also pplying f, to the Weyl character formula,

t~(Pw(A+p))

Foleh(VONI(E) = gt s

Using the above with p= X+ p,

P2 [T e (1 — £ (@AFP))
t+=(p.p) Moeas (1 - t(p,a))

Fo(ch(VO)(1) = -

Note that
Fo(ch(V()))(t) = > dim(V (X))t )

pneX

so taking a limit as ¢ tends to 1,

Haetb* (>‘ +p, a) _ Hoee@*(/\ +p, d)
Haecb*' (p,Oé) Haeq"* (p’d>

dim(V()) =

O

Example. Let g =sl3 and let X\ = miw; + mows. We will calculate dim(V ()\)).
p =1 +as and so

H ()\ + p,d) :(m1w1 + MoWwy + (x1 + 0527021>
aed* X (m1w1 + Mowo + x1 + OéQ,OZQ)
X (m1a1 + Mmaotig + (1 + g, (Oq :F Olg))
=(mq +1)(mso +1)(mq +ma +2)

[Taea+ (p, &) = (1)(1)(2) and therefore

(m1 + 1)(m2 + 1)(’[’77,1 +Mmo + 2)
B .

dim(V (M) =
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Warm Up for lecture 22: For g = sl3, with V(w;) the defining repre-
sentation, decompose Sym?(V (wy)) into irreducibles. Note that e; is a highest
weight vector for V(wi), and recall that a basis for Sym? V(w,) is e; ® e; with
1<i<j<3. For Sym*(V(wy)), e ® e; is a highest weight vector, since if
aedt

ea-(e1®e1)=(eqe1)®e1+e1®(epe1)=0®e; +e;00=0.

and if ¢t e t,

t-e1®e; = (te1)®e;+e1®(ter) = (wi(t)er)®er+e;®(wi(t)er) = 2wy (t)(e1®eq)

So V(2wy) is a subrepresentation.
. 1
dim(V/(2w1)) = 5(3)(1)(4) = 6
so Sym? V(wy) = V(2w).

Weight Diagrams for sl
V(2w1)

The dominant weights are 2w; and 2w — a1 = wo

a2
[ ]
w2
[6) ) @2wq
] [ Je 3]
[} [}
o
V(2w1 + WQ)
m Number of Weyl conjugates | dim(V (2w; +w2),)
20.}1 + Wo 6 1
2wo 3 1
w1 3 2
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6] ) @2w1 + wo
Q2
[ ]
6} @ @ w1 6]
[ ] [ Yoi5I
) @ e
6) o)

and dim(V (2w +w2)) = 3(3)(2)(5) = 15.
Handy fact: dim(V(\),) <| {81, Bk | =01 -+ - Bk} This is since if
v e V(A) is a highest weight vector then can find a basis for V(\) of the form

€3y "€, V-
In our case, wy = 2wy +wa — (@1 + @) = 2wy +wa — (1) — (a2)

Exercise. For g = sl3, decompose V(2w;) ® V(w2) into irreducibles.
Hint: V(2w; +ws) is a subrepresentation.

Weight diagrams for G, adjoint representation
()

a2 e ° [e]%%] )

o ° o (Y]

The long roots span an As - can decompose the adjoint representation of Go
under action of sls.
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9 Groups

Throughout, g semisimple, A, ®t as usual, h, € t. For a € ®, choose e, € g,
such that [eq,e_o] = hq-
We’ve defined two groups in this course:

1. The group of inner automorphisms of g:

Gaq = (exp(adz) | adz,z € g is nilpotent)

2. The Weyl group W.

We can say some things about the structure of G.q.

Example. g =sl,

Recall that if € g is nilpotent then exp(ad(z))(y) = exp(z)yexp(z)~! for
all y € g (Lemma 8.1).

Claim 1: If g € SLy(C) then the map ¢4 : g —> g given by

pg(x) = grg™
is an element of G,q.
. 0 1 0 0 .
To see this, let e = 0 0 f= 1 ol® usual. Then te,tf are nilpotent for

any t € C, and exp(te) = [(1) i] sexp(tf) = [1 (1)] and

SLQ(C):([(I) i]i (1)]|te(C) O

Define ¢ : SLy(C) — Gaa by ¢(g) = ¢4. By Lemma 8.1 this is surjective.

Ker(p) = (| _01]>
80 Gaq = PGLy(C).
Now, for general g, given « € ® define a map u, : C — G.q by
uq(t) = exp(ad(teq))
Lemma 18.1. u, is an injective homomorphism.

Proof. To see that it is a homomorphism,

exp(ad(t + s)es) = exp(ad(te,) + ad(se,)) = exp(ad(te,)) exp(ad(sey))

To see that it is injective,
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exp(ad(teq))ha =ha +tlea, ha] + -
=h, — 2te,
=he <= t=0

O

Definition. u, is called a root group homomorphism. Let U, be the image of
Uq, then U, is called a root group.

Definition. If G is a group, a representation of G is a homomorphism G —
GL(V) for some vector space V. All vocabulary translates over from represen-
tations already discussed.

Let G = (Uy,U)-a), a subgroup of G.q. Then g is a representation of G,

Lemma 18.2. If V is an my subrepresentation of G, then V is a G, subrep-
resentation of g.

Proof. Take v eV, un(t) -v=3 1 gcnen-veV soGy-V V. O
So:
e m, is a G, subrepresentation of g.
e Ker(w) ctis a G, subrepresentation of g.

o If 5 # +a, then let

Vﬁ = @ 9B+ka
keZ

This is also a G,, subrepresentation.

Proposition 18.3. 1. There is a surjective homomorphism G, — P GLy(C).
2. There is a surjective homomorphism ¢ : SLa(C) — G, such that

Y G R Rt

3. G4 is isomorphic to either P GLy(C) or SLy(C).

Proof. Let Inn(sly) be the group of inner automorphisms of sly, isomorphic to
P GLy(C).

1. Since my,, is a subrepresentation, the action of G, preserves my,. uq(t), u—_q(t)
act on m, by inner automorphisms, so we get a homomorphism

Ga — Inn(s[z) = PGLQ((C)

This is surjective since if we write m, —> sl with e, —> €, e_o, —> f
then with respect to this identification

U (t) |m, = exp(adte); u_q(t) |m,=exp(adtf)
and Inn(sly) = (exp(adte),exp(adtf) | t e C).
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Note (1) and (2) imply 3 since SLg(C) —— G4 —— PGL2C where IT

is the surjective map SLo(C) — P GL2(C) with kernel ([

-1 0
0 -1 )

For (2), the idea is to define a map ¢, : SLy(C) — GL(g) and show that
im(pq) = Ga.

Recall that g = m, ® Ker(o) @ Vg where Vi = ®19p+1q S0 it suffices to define
an action on each piece.

Ma:

Ker(a):

@a(x)(y) = $y$717$ € SLQay € Mq.
Suppose h € Ker(a).
uq(t) = exp(adtey)(h)

= h+t[ea, h] + -
=h

S0 uq (1) acts as the identity n Ker(«). Similarly, u_,(¢)(h) = h, so define
Ya(x)(h) =h for all z € SLy, h € Ker(a).

: This uses

Warm up for Lecture 24: Let P, = {agz" +a 2" y+--+a,y" | a; € C}.
Then SL2(C) acts on P, via

[a Z] fz,y) = f(ax + cy, bz + dy)

C

[1 (t)]‘x2=1’25 [1 i]‘wy:xwtw?; [1 i]'y2=(m+y)2

and

Lemma 18.4. Given B # +a, let dim(V)s = n+ 1. Then there is an
isomorphism of vector spaces pg — P,, such that

eatua®-0 =[5 1] e eatuaty0 =[] a0

Proof. (Sketch) without loss of generality 5—a« is not a root, else vg = vg_q

and can do a replacement. Define

0s(epira) = dpaFy™™"

for some well chosen constants dj (c.f. Carter, ”Simple Groups of Lie
Type,” 16.2). O
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Now, if 8 # za, we can define ¢, (2)(y) = - ¢(y) for all y € Vg, = «€
SLy(C). Note that by construction gpa(|:(1) i]) = un(t) € GL(g) and

@a([]lf (1)]) =u_q(t) € GL(g) and so
im(@a) =Go.

O
The Weyl group acts on t via w-ha,; = hy(q,) for all i and extending linearly.
Exercise. Under this action, w - hy = hy(a) for all we W, a € ®.

Hint: Write hy = Y c;hqa,, Things are equal in t <= they are equal in
every root, so is sufficient to prove the claim for w = wg. Note that v(hy(a)s) =

(v, waf3).

Proposition 18.5. Let n, = gpa(|: 0 1]) € Gaq- Then for all e @,

-1 0

Mo g = hu,(8); Naes = £eu,(p)

Proof. (Sketch): Action on mg

0 1fj0o 1]{0 -1f{ |0 O
-1 offo ofjfr o [-1 0O
SO N * €o = —€_q, and similarly ng - e_q = —€q, Mo~ ha = ~ha = hoo = by (a)- If

B # +a, then hg — %(a,B)hQ e Ker(a).

(s = (0 B)he) = hi e B

SO
fa(hs) + 540, B)ha = hs = > {0 B
S0
na(hg) = hs = (@, f)ha
and it suffices to show that y(hg - (a, B)ha) = (P, (5)) for each vy € ®.

The left hand side is (v, B)—(c, B)(~, &), and the right hand side is (7, wa ) =
{(wa,B) = {y = ({7, @), ), so we are done. O

Generalising all of this:

1. Can replace ad with an arbritrary representation ¢ : g — gl(V'). Can
define u,(t) = exp(p(tey)) for all ¢, and the group generated by (u, |
a € @) is a subgroup of GL(V).

2. If careful, this can be done for any group.
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